中国商业银行金融风险预警指标体系研究论文.doc中国商业银行金融风险预警指标体系研究论文
【关键词】预警,指标体系,研究,风险,.freelan等人(1994)利用神经网络对意大利公司进行失败预测4。神经网络方法是一种自适应的非参数方法,并不严格要求样本数据的分布,不仅具有非线性映射和泛化能力5,而且神经网络模型的分布自由,较之多元判别分析模型,对实际问题更加适用。
信用度量技术(Credit Metrics,1997)运用VaR 框架6,对贷款和非交易资产进行风险的评价和计量7。但是Credit Metrics模型的违约模型和相关系数的度量是以期权定价理论为基础的,这对资本市场的成熟度以及数据的真实性都有极高的限制要求,因而可操作性有所降低。
麦肯锡模型(Credit Portfolio Vieulation Approach)模拟周期性因素的冲击,以测定评级转移概率的改变趋势并进行度量9,但是由此给模型增加了相当的复杂程度。
相比之下,国内关于商业银行金融风险预警的研究起步较晚,同时囿于研究所需的数据资料稀缺等原因,致使当下国内该领域的研究仍然十分欠缺。具有代表性的理论研究大致如下:
隋剑雄(2004)针对国内商业银行经营管理模式,提出了适应本国银行发展需求且以核心指标和辅助指标构成的信贷风险预警指标体系,采用向量法(TE)作为构建风险预警模型的算法,通过构建商业银行信贷风险预警系统对信贷风险进行监测和分析,该模型侧重于对商业银行信贷风险的说明及预警的相关指标和报警范围10。
李华明、向颖珍(2007)运用时间序列分析方法,以ARMA模型来构建信用风险预警模型,使得信用风险预警模型将影响信用风险的多种因素通过所考察的指标自身的变化来反映11。不足之处在于:首先,该模型单纯用历史数据进行模拟,虽预测了其可能的走势,但对其存在这种走势的具体原因并没有明确表明;其次该模型只是利用不良贷款率单一指标来建立模型,没有考虑其他指标折射的整体状况;最后,模型的模拟效果也会随着指标的变化而变化,预测结果十分不稳定。
从监管层面来看:2005年开始,银监会依据新制定的《商业银行风险预警操作指引(试行)》按季对商业银行法人机构进行风险预警的试运行,以提高银行风险监管的敏感性和有效性。
综合以上的理论研究可以看出,现有的成果主要存在下列不足之处:一是大多学者关于预警体系的研究都过度集中于商业银行的信贷业务,从而无法做到整体考量商业银行的风险;二是过分依赖少部分银行现有的指标,再依据趋势变化给出预警结果,但往往结果偏离较大,不够理想。整体来看,中国商业银行金融风险预警多停留于较为传统的指标分析阶段,即使少数学者提出数量方法,但也显得单一和偏颇,因而对于该领域的研究还应当增加定量方法以期取得更好的功效。
三、商业银行金融风险来源
从中国商业银行的发展历程及现状来看,商业银行所面临的主要风险集中体现为信用风险、市场风险、操作风险和流动性风险(操作风险属人为因素所导致,在接下来的指标体系构建中暂不予考虑)。再依据其风险来源的差异大致可以将商业银行金融风险划分为以下几个方面:
(一)宏观经济发展所带来的风险
商业银行金融风险的发生很大程度上取决于经济基本面的运营状况,如果宏观经济运行中出现通胀或是结构失衡等现象,都将导致市场上货币资金的供求产生大幅的变化,作为货币资金的投放和回笼
中国商业银行金融风险预警指标体系研究论文 来自淘豆网m.daumloan.com转载请标明出处.