下载此文档

数据挖掘心得体会.doc


文档分类:IT计算机 | 页数:约38页 举报非法文档有奖
1/38
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/38 下载此文档
文档列表 文档介绍
数据挖掘心得体会

篇一:数据挖掘课程体会
数据挖掘课程体会
学习数据挖掘这门课程已经有一个学期了,在这十余周的学习过程中,我对数据挖掘这门课程的一些技术有了一定的了解,并明确了一些容易混淆的概念,以下主要谈一下我的心得体会。
近年来,数据挖掘引起了信息产业界的极大关注,其主要原因是存在大量数据,可以广泛使用,并且迫切需要将这些数据转换成有用的信息和知识。数据挖掘就是从大量的数据中,抽取出潜在的、有价值的知识、模型或规则的过程。作为一类深层次的数据分析方法,它利用了数据库、人工智能和数理统计等多方面的技术。
要将庞大的数据转换成为有用的信息,必须先有效率地收集信息。随着科技的进步,功能完善的数据库系统就成了最好的收集数据的工具。数据仓库,简单地说,就是搜集来自其它系统的有用数据,存放在一整合的储存区内。所以其实就是一个经过处理整合,且容量特别大的关系型数据库,用以储存决策支持系统所需的数据,供决策支持或数据分析使用。
数据挖掘的研究领域非常广泛,主要包括数据库系统、基于知识的系统、人工智能、机器学习、知识获取、统计学、空间数据库和数据可视化等领域。主要是可以做以下几件事:分类、估计、预测、关联分析、聚类分析、描述和可视化、复杂数据类型挖掘。在这里就不一一介绍了。
在学习关联规则的时候,提出了一个关于啤酒与纸尿布的故事:在一家超市里,纸尿布与啤酒被摆在一起出售,但是这个奇怪的举措却使得啤酒和纸尿布的销量双双增加了。其实,这是由于这家超市对其顾客的购物行为进行购物篮分析,在这些原始交易数据的基础上,利用数据挖掘方法对这些数据进行分析和挖掘。从而意外的发现跟纸尿布一起购买最多的商品竟是啤酒。按我们的常规思维,啤酒与纸尿布是两个毫无关联的商品,但是借助数据挖掘技术对大量交易数据进行挖掘分析后,却可以寻求到这一有价值的规律。这个故事在一定程度上说明了数据挖掘技术的巨大价值。
总之,非常感谢周教员在这十余周的精彩授课,让我受益匪浅,我会继续学习这门课程,努力为今后的课题研究或论文打好基础。
篇二:数据挖掘讲课心得体会
数据挖掘讲课心得体会
今年的数据仓库与数据挖掘课程,任课老师布置每人讲一章,并课中研讨的授课方式,我非常赞同这种自己备课,自己上去讲课并课中和同学研讨、最终老师点评的做法,因为他能让自己更好理解文章,同时又可以锻炼自己的表达能力。
我主讲《数据仓库与数据挖掘技术》中的第二章“知识发现过程与应用结构”,在整个备课和讲课当中,存在很多不足,备课时参考的书目太少,使得在讲课时关于概念和文章出现的例子不能进行相关扩展和补充,也不能用生活中通熟易懂的例子来阐述书本中的抽象概念;讲课时更多的按着PPT所写进行概略性的讲述,没有形成自己的逻辑思维体系,我也知道,讲课是门艺术,不是几次就能掌握的,要经过不断的实践积累经验,不断的研读相关书目,形成自己的“知识树”的基础上,才能对所讲的知识融会贯通。台湾有位教育家曾说:如果你要讲一门,至少要对该门课的五至六本经典教材研读几遍,形成相应的知识树之后才好授课,这是题外话。
关于数据挖掘每一章算法的授课,我认为在有限的时间里先把一个核心算法解释清楚,对其他算法可以简略带过(最后一次课XXX对PageRank的讲解就很到位),因为,后面算法一般是前面所讲算法的一种改进。算法讲解时,除了要对该算法的原理和概念讲述清楚之外,要对该算法的实例最好用板书的形式解释清楚,并演算每一步,而不是拘泥于PPT进行讲解。板书字体可大可小,速度可快可慢,可以写
写停停,也可以一气呵成,可以边写边讲,也可以只写不讲。而PPT是则是死的东西,参考的内容也是书上的步骤,而不是授课人自己的理解,在讲解过程中,不利于学生的理解和认识。讲解的过程中,语速要适当放慢,语速太快是所有人刚开始讲课的通病,我也不例外,讲课讲得很快,自己的思维被打乱不说,主要下面的同学不能理解,毕竟讲课不是演讲。
对于上学期的一页纸开卷,我非常赞同这种考试方式,毕竟对于理工类课程,公式很长,又特别难记,我们在理解其思想的基础上,完全没必要再记很长的公式,在考试的过程中,可以相应的记录些公式带入考场。
以上是我个人在讲课和听课过程、及其考试过程中的一些总结和体会。
篇三:大数据学习总结
《大数据时代》读后感
一、学习总结
1、关于作者
维克托·迈尔-舍恩伯格(Viktor Mayer-Sch?nberger),他是十余
年潜心研究数据科学的技术权威,他是最早洞见大数据时代发展趋势
的数据科学家之一。
2、关于大数据
1)大数据是什么
大数据(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处

数据挖掘心得体会 来自淘豆网m.daumloan.com转载请标明出处.

非法内容举报中心
文档信息
  • 页数38
  • 收藏数0 收藏
  • 顶次数0
  • 上传人raojun00001
  • 文件大小68 KB
  • 时间2017-12-17
最近更新