2011年高考分类汇编之解析几何(八)
辽宁文
(5,1),B(1,3)两点,圆心在x轴上,则C的方程为___________.
全国Ⅰ理
(7)设直线L过双曲线C的一个焦点,且与C的一条对称轴垂直,L与C交于A ,B两点,为C的实轴长的2倍,则C的离心率为 B
(A) (B) (C)2 (D)3
(9)曲线,直线及轴所围成的图形的面积为 C
(A) (B)4 (C) (D) 6
(14)在平面直角坐标系中,椭圆的中心为原点,焦点在轴上,离心率为。过的直线L交C于两点,且的周长为16,那么的方程为 。
(20)(本小题满分12分)
在平面直角坐标系xOy中,已知点A(0,-1),B点在直线y = -3上,M点满足, ,M点的轨迹为曲线C。
(Ⅰ)求C的方程;
(Ⅱ)P为C上的动点,l为C在P点处得切线,求O点到l距离的最小值。
(20)解:
(Ⅰ)设M(x,y),由已知得B(x,-3),A(0,-1).
所以=(-x,-1-y), =(0,-3-y), =(x,-2).
再由题意可知(+)?=0, 即(-x,-4-2y)?(x,-2)=0.
所以曲线C的方程式为y=x-2.
(Ⅱ)设P(x,y)为曲线C:y=x-2上一点,因为y=x,所以的斜率为x
因此直线的方程为,即。
,所以
当=0时取等号,所以O点到距离的最小值为2.
(23)(本小题满分10分)选修4-4:坐标系与参数方程
在直角坐标系xOy中,曲线的参数方程为为参数),M为上的动点,P点满足,点P的轨迹为曲线.
(I)求的方程;
(II)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线与的异于极点的交点为A,与的异于极点的交点为B,求|AB|.
(23)解:(I)设P(x,y),则由条件知M().由于M点在C1上,所以
即从而的参数方程为(为参数)
(Ⅱ)曲线的极坐标方程为,曲线的极坐标方程为。
射线与的交点的极径为,
射线与的交点的极径为。所以.
全国Ⅰ文
(4)椭圆的离心率为 D
(A) (B) (C) (D)
(20)(本小题满分12分)
在平面直角坐标系xOy中,曲线与坐标轴的交点都在圆C上.
(I)求圆C的方程;
(II)若圆C与直线交于A,B两点,且求a的值.
(20)解:
(Ⅰ)曲线与y轴的交点为(0,1),与x轴的交点为(
故可设C的圆心为(3,t),则有解得t=1.
则圆C的半径为所以圆C的方程为
(Ⅱ)设A(),B(),其坐标满足方程组:
消去y,得到方程
由已知可得,判别式
因此,从而 ①
由于OA⊥OB,可得又所以
②;由①,②得,满足故
山东理
:相切,且双曲线的右焦点为圆C的圆心,则该双
2011年高考分类汇编之解析几何8 来自淘豆网m.daumloan.com转载请标明出处.