2011年高考分类汇编之解析几何(二)
北京理
,圆的圆心的极坐标是
A. B. C. D.
【解析】:,圆心直角坐标为(0,-1),极坐标为,选B。
8. 设A(0,0),B(4,0),C(,4),D(t,4)(),记N(t)为平行四边形ABCD内部(不含边界)的整点的个数,其中整数点是指横、纵坐标都是整数的点,则函数N(t)的值域为 C
A.{ 9,10,11 } B.{ 9,10,12 }
C.{ 9,11,12 } D.{ 10,11,12 }
,给出下列三个结论:
①曲线C过坐标原点;
②曲线C关于坐标原点对称;
③若点P在曲线C上,则的面积不大于.
其中,所有正确结论的序号是____________.②③
:,过点(m,0)作圆的切线l交椭圆G于A,B两点。
(1)求椭圆G的焦点坐标和离心率;
(2)将表示为m的函数,并求的最大值。
(19)解:(Ⅰ)由已知得所以
所以椭圆G的焦点坐标为,离心率为
(Ⅱ)由题意知,.当时,切线l的方程,
点A、B的坐标分别为此时
当m=-1时,同理可得
当时,设切线l的方程为
由;设A、B两点的坐标分别为,则;
又由l与圆
所以
由于当时,因为
且当时,|AB|=2,所以|AB|的最大值为2.
北京文
(0,2),B(2,0).若点C在函数y = x的图像上,则使得ΔABC的面积为2的点C的个数为A
19.(本小题共14分)
已知椭圆的离心率为,右焦点为(,0),斜率为I的直线与椭圆G交与A、B两点,以AB为底边作等腰三角形,顶点为P(-3,2).
(I)求椭圆G的方程;(II)求的面积.
(19)解:(Ⅰ)由已知得解得,又
所以椭圆G的方程为
(Ⅱ)设直线l的方程为
由得
设A、B的坐标分别为AB中点为E,
则;因为AB是等腰△PAB的底边,
所以PE⊥=2。
此时方程①为解得所以
所以|AB|=.此时,点P(—3,2)到直线AB:的距离
所以△PAB的面积S=
福建理
,F2,若曲线r上存在点P满足=4:3:2,则曲线r的离心率等于
A. D.
17.(本小题满分13分)
已知直线l:y=x+m,m∈R。
(I)若以点M(2,0)为圆心的圆与直线l相切与点P,且点P在y轴上,求该圆的方程;
(II)若直线l关于x轴对称的直线为,问直线与抛物线C:x2=4y是否相切?说明理由。
、圆、抛物线等基础知识,考查运算求解能力,考查函数与方程思想、数形结合思想、化归与转化思想、
2011年高考分类汇编之解析几何2 来自淘豆网m.daumloan.com转载请标明出处.