该【泰州市七年级下学期期末压轴难题数学试题 】是由【海洋里徜徉知识】上传分享,文档一共【24】页,该文档可以免费在线阅读,需要了解更多关于【泰州市七年级下学期期末压轴难题数学试题 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。泰州市七年级下学期期末压轴难题数学试题一、() C. ,是通过下图平移得到的是()A. B. C. ,点位于() :①若,则点在原点处;②点一定在第四象限③已知点与点,m,n均不为0,则直线平行x轴;④已知点A(2,-3),轴,且,则B点的坐标为(2,2).以上命题是真命题的有() ,真命题有()①两条直线被第三条直线所截,内错角相等;②如果和是对顶角,那么;③一个角的余角一定小于这个角的补角;④ ()A. B. C. ,ABCD为一长方形纸片,AB∥CD,将ABCD沿E折叠,A、D两点分别与A′、D′对应,若∠CFE=2∠CFD′,则∠AEF的度数是()° ° ° °,对于点P(x,y),我们把点P′(﹣y+1,x+1),点A2的幸运点为A3,点A3的幸运点为A4,…,这样依次得到点A1,A2,A3,…,(3,1),则点A2021的坐标为( )A.(﹣3,1) B.(0,﹣2) C.(3,1) D.(0,4)二、=0,则=,,AD、AE分别是△ABC的角平分线和高,∠B=50°,∠C=70°,则∠DAE=_____________°.,直线,,,,将一张长方形纸片沿折叠后,点,分别落在,的位置,若,,的小数部分是,,y轴左侧,到x轴的距离是3,到y轴的距离是4,,一只跳蚤在第一象限及x轴、y轴上跳动,第一秒它从原点跳动到点(0,1),第二秒它从点(0,1)跳到点(1,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→…],每秒跳动一个单位长度,、:(1)||+2;(2):(1);(2);(3).,四边形ABCD中,DA=DC=90°,BE,DF分别是DABC,//,:在四边形ABCD中,DA+DABC+DC+DADC=360°∵DA=DC=90°(已知)∴DABC+DADC=°,∵BE,DF分别是DABC,DADC的平分线,∴D1=DABC,D2=DADC()∴D1+D2=(DABC+DADC)∴D1+D2=°∵在△FCD中,DC=90°,∴DDFC+D2=90°()∵D1+D2=90°(已证)∴D1=DDFC()∴BE∥DF.(),在平面直角坐标系中,,三角形经过平移后得到三角形,已知点的对应点.(1)在图中画出平移后的三角形,并写出点的坐标;(2),是的小数部分,、,如图1,,重新拼成一个大正方形.(1)基础巩固:拼成的大正方形的面积为______,边长为______;(2)知识运用:如图3所示,将图2水平放置在数轴上,,边为半径画圆弧,交数轴于点E,则点E表示的数是______;(3)变式拓展:①如图4,给定的方格纸(每个小正方形边长为1),你能从中剪出一个面积为13的正方形吗?若能,请在图中画出示意图;②请你利用①、:在同一平面内,两条不重合的直线的位置关系有相交、平行,若两条不重合的直线只有一个公共点,我们就说这两条直线相交,若两条直线不相交,我们就说这两条直线互相平行两条直线的位置关系的性质和判定是几何的重要知识,:,点B为平面内一点,AB⊥:(1)如图1,直接写出∠A和∠C之间的数量关系;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,则∠EBC=.,为直线上一点,过点作射线,将一直角三角板()的直角顶点放在点处,一边在射线上,另一边与都在直线的上方,将图1中的三角板绕点以每秒3°的速度沿顺时针方向旋转一周.(1)几秒后与重合?(2)如图2,经过秒后,,求此时的值.(3)若三角板在转动的同时,射线也绕点以每秒6°的速度沿顺时针方向旋转一周,那么经过多长时间与重合?请画图并说明理由.(4)在(3)的条件下,求经过多长时间平分?:(1)图1形似燕尾,我们称之为“燕尾形”,请写出、、、之间的关系,并说明理由;(2)图2形似8字,我们称之为“八字形”,请写出、、、之间的关系,并说明理由:应用乐园:直接运用上述两个结论解答下列各题(3)①如图3,在中,、分别平分和,请直接写出和的关系;②如图4, .(4)如图5,与的角平分线相交于点,与的角平分线相交于点,已知,,.(1)如图1所示,△ABC中,∠ACB的角平分线CF与∠EAC的角平分线AD的反向延长线交于点F;①若∠B=90°则∠F= ;②若∠B=a,求∠F的度数(用a表示);(2)如图2所示,若点G是CB延长线上任意一动点,连接AG,∠AGB与∠GAB的角平分线交于点H,随着点G的运动,∠F+∠H的值是否变化?若变化,请说明理由;若不变,请求出其值.【参考答案】一、:B【分析】如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根,记为.【详解】解:=3,故选:B.【点睛】本题考查了算术平方根的定义,【分析】根据平移的性质,即可解答.【详解】由平移的性质可知C选项符合题意,A、B、【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变解析:C【分析】根据平移的性质,即可解答.【详解】由平移的性质可知C选项符合题意,A、B、【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,【分析】根据各象限内点的坐标特征解答.【详解】解:点(3,-2):D.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).【分析】利用有理数的性质和坐标轴上点的坐标特征可对①进行判断;利用或可对②进行判断;利用、点的纵坐标相同可对③进行判断;通过把点坐标向上或向下平移5个单位得到点坐标可对④进行判断.【详解】解:若,则或,所以点坐标轴上,所以①为假命题;,点一定在第四象限,所以②为真命题;已知点与点,,均不为0,则直线平行轴,所以③为真命题;已知点,轴,且,则点的坐标为或,所以④:B.【点睛】本题考查了命题与定理:命题的“真”“假”,一般需要推理、论证,而判断一个命题是假命题,【分析】根据平行线的性质对①进行判断;根据对顶角的性质对②进行判断;根据余角与补角的定义对③进行判断;根据三角形外角性质对④进行判断.【详解】解:两条平行直线被第三条直线所截,内错角相等,所以①错误;如果∠1和∠2是对顶角,那么∠1=∠2,所以②正确;一个角的余角一定小于这个角的补角,所以③正确;三角形的外角大于任何一个与之不相邻的一个内角,所以④:B.【点睛】本题考查了命题与定理:判断一件事情的语句,,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”,【分析】利用立方根和算术平方根的定义,以及二次根式的化简得到结果,即可做出判断.【详解】解:A、,故本选项错误;B、,故本选项错误;C、,故本选项正确;D、,故本选项错误;故选:C.【点睛】此题考查了立方根和算术平方根,以及二次根式的化简,熟练掌握立方根和算术平方根的定义,【分析】先根据平行线的性质,由AB∥CD,得到∠CFE=∠AEF,再根据翻折的性质可得∠DFE=∠EFD′,由平角的性质可求得∠CFD′的度数,即可得出答案.【详解】解:∵AB∥CD,∴∠CFE=∠AEF,又∵∠DFE=∠EFD′,∠CFE=2∠CFD′,∴∠DFE=∠EFD′=3∠CFD′,∴∠DFE+∠CFE=3∠CFD′+2∠CFD′=180°,∴∠CFD′=36°,∴∠AEF=∠CFE=2∠CFD′=72°.故选:D.【点睛】本题主要考查了平行线的性质,翻折变换等知识,【分析】根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可.【详解】解:∵A1的坐标为(3,1),∴解析:C【分析】根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可.【详解】解:∵A1的坐标为(3,1),∴A2(0,4),A3(﹣3,1),A4(0,﹣2),A5(3,1),…,依此类推,每4个点为一个循环组依次循环,∵2021÷4=505???1,∴点A2021的坐标与A1的坐标相同,为(3,1).故选:C.【点睛】本题是对点的变化规律的考查,读懂题目信息,理解“伴随点”、【解析】试题分析:根据非负数之和为零则每个非负数都为零可得:m+3=0,n-2=0,解得:m=-3,n=2,则==::9【解析】试题分析:根据非负数之和为零则每个非负数都为零可得:m+3=0,n-2=0,解得:m=-3,n=2,则==:.【分析】根据MN与x轴平行可以求得M点坐标,进一步可以求得点M关于y轴的对称点的坐标. 【详解】解:∵MN与x轴平行,∴两点纵坐标相同,∴a=-5,即M为(-3,-5)∴点M关于y轴的对解析:【分析】根据MN与x轴平行可以求得M点坐标,进一步可以求得点M关于y轴的对称点的坐标. 【详解】解:∵MN与x轴平行,∴两点纵坐标相同,∴a=-5,即M为(-3,-5)∴点M关于y轴的对称点的坐标为:(3,-5)故答案为(3,-5).【点睛】本题考查图形及图形变化的坐标表示,熟练掌握各种图形及图形变化的坐标特征是解题关键. 【分析】根据三角形内角和定理求出∠BAC,再根据角平分线的定义求出∠BAD,根据直角三角形两锐角互余求出∠BAE,然后求解即可.【详解】解:∵∠B=50°,∠C=70°,∴∠BAC=1解析:10【分析】根据三角形内角和定理求出∠BAC,再根据角平分线的定义求出∠BAD,根据直角三角形两锐角互余求出∠BAE,然后求解即可.【详解】解:∵∠B=50°,∠C=70°,∴∠BAC=180°-∠B-∠C=180°-50°-70°=60°,
泰州市七年级下学期期末压轴难题数学试题 来自淘豆网m.daumloan.com转载请标明出处.