推导公式:(a+b+c)/(sinA+sinB+sinC)=2R(其中,R为外接圆半径)
由正弦定理有
a/sinA=b/sinB=c/sinC=2R
所以
a=2R*sinA
b=2R*sinB
c=2R*sinC
加起来a+b+c=2R*(sinA+sinB+sinC)带入
(a+b+c)/(sinA+sinB+sinC)=2R*(sinA+sinB+sinC)/(sinA+sinB+sinC)=2R
两角和公式
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-cosAsinB
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
cot(A+B)=(cotAcotB-1)/(cotB+cotA)
cot(A-B)=(cotAcotB+1)/(cotB-cotA)
倍角公式
Sin2A=2SinA?CosA
对数的性质及推导
用^表示乘方,用log(a)(b)表示以a为底,b的对数
表示乘号,/表示除号
定义式:
若a^n=b(a>0且a≠1)
则n=log(a)(b)
基本性质:
a^(log(a)(b))=b
log(a)(MN)=log(a)(M)+log(a)(N);
log(a)(M/N)=log(a)(M)-log(a)(N);
log(a)(M^n)=nlog(a)(M)
推导
这个就不用推了吧,直接由定义式可得(把定义式中的[n=log(a)(b)]带入a^n=b)
MN=M*N
由基本性质1(换掉M和N)
a^[log(a)(MN)]=a^[log(a)(M)]*a^[log(a)(N)]
由指数的性质
a^[log(a)(MN)]=a^{[log(a)(M)]+[log(a)(N)]}
又因为指数函数是单调函数,所以
log(a)(MN)=log(a)(M)+log(a)(N)
与2类似处理
MN=M/N
由基本性质1(换掉M和N)
a^[log(a)(M/N)]=a^[log(a)(M)]/a^[log(a)(N)]
由指数的性质
a^[log(a)(M/N)]=a^{[log(a)(M)]-[log(a)(N)]}
又因为指数函数是单调函数,所以
log(a)(M/N)=log(a)(M)-log(a)(N)
与2类似处理
M^n=M^n
由基本性质1(换掉M)
a^[log(a)(M^n)]={a^[log(a)(M)]}^n
由指数的性质
a^[log(a)(M^n)]=a^{[log(a)(M)]*n}
又因为指数函数是单调函数,所以
log(a)(M^n)=nlog(a)(M)
其他性质:
性质一:换底公式
log(a)(N)=log(b)(N)/log(b)(a)
推导如下
N=a^[log(a)(N)]
a=b^[log(b)(a)]
综合两式可得
N={b^[log(b)(a)]}^[log(a)(N)]=b^{[log(a)(N)]*[log(b)(a)]}
又因为N=b^[log(b)(N)]
所以
b^[log(b)(N)]=b^{[log(a)(N)]*[log(b)(a)]}
所以
log(b)(N)=[log(a)(N)]*[log(b)(a)]{这步不明白或有疑问看上面的}
所以log(a)(N)=log(b)(N)/log(b)(a)
性质二:(不知道什么名字)
log(a^n)(b^m)=m/n*[log(a)(b)]
推导如下
由换底公式[lnx是log(e)(x),e称作自然对数的底]
log(a^n)(b^m)=ln(a^n)/ln(b^n)
由基本性质4可得
log(a^n)(b^m)=[n*ln(a)]/[m*ln(b)]=(m/n)*{[ln(a)]/[ln(b)]}
再由换底公式
log(a^n)(b^m)=m/n*[log(a)(b)]
--------------------------------------------(性质及推导完)
公式三:
log(a)(b)=1/log(b)(a)
证明如下:
由换底公式log(a)(b)=log(b)(b)/log(b)(a)----取以b为底的对数,log(b)(b)=1
=1/log(b)(a)
还可变形得:
log(a)(b)*log(b)(a)=1
平方关系:
sin^2(α)+cos^2(α)=
高一数学必修4公式 来自淘豆网m.daumloan.com转载请标明出处.