初三总复习_数学课本知识点归类总结七至九年级数学课本知识点归类总结
代数
1、有限小数或无限循环小数称为有理数,无限不循环小数称为无理数,有理数和无理数统称为实数,
2、实数的分类:
3、规定了原点、正方向和单位长度的直线叫做数轴。数轴上所有的点与全体实数是一一对应关系,即每个实数都可以用数轴上的点表示,反过来,数轴上的每一个点都可以表示一个实数。
4、只有符号不同的两个数叫做互为相反数。一般地,
四、两个互为相反数的和等于零;互为倒数的两个数的积等于1;零没有倒数。
五、偶数一般用(为整数)来表示,奇数一般用来表示。(包括负偶数和负奇数)
六、有理数都可以表示为(,为整数且,互质)的形式;任何一个分数都可以化成有限小数或无限循环小数的形式;如果一个
类似于分数的形式,分子或分母中含有无理数,则为无理数。
七、绝对值
八、非负数像,,形式的数都表示非负数。
非负数性质①最小的非负数是0;②若几个非负数的和是0,则每个非负数都是0。
九、近似数与有效数字一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位,这时,从左边第一个不是0的数字起到精确的数位止,所有的数字都叫这个数的有效数字;如果一个数写成的是科学计数法的形式,我们只需要看前面的数,如:×105,,精确到百分位,三个有效数字。
,其中,为整数。
命题热点
本节是中考必考内容,在考点上有实数、相反数、绝对值、倒数、数轴、近似数与有效数字、科学记数法等。在题型上多以填空、选择题出现,近年则比较注重实际应用与创新能力方面的考查。
②实数的运算与实数的大小比较
知识要点
一、实数运算在实数范围内,可以进行加、减、乘、除、乘方和开方运算,但是,除数不能为0,开偶次方时被开方数为非负数。其中加、减是一级运算,乘、除是二级运算,乘方、开方是三级运算,同级运算从左到右依次进行;无括号的不同级运算先算高级运算;有括号时,先算小括号,再算中括号的,后算大括号的。
二、实数的大小比较三种比较方法:数轴比较法,将两实数分别表示在数轴上,右边的数总比左边的数大,两数表示同一点则相等。差值比较法,设,是任意两实数,则;;。商值比较法,设,是任意两正实数,则;;。
命题热点
对本节知识的考查,多以填空、选择题和计算题等题型为主,近年还出现了大量的以阅读理解与探索猜想为形式的新题型。命题者往往在易错点设置陷阱,对学生的创新能力、自学能力有较高的要求,希望能引起同学们的重视。
③二次根式
知识要点
一、二次根式式子叫做二次根式。
二、最简二次根式
满足下列两个条件的二次根式,叫做最简二次根式:①被开方数的因数是整数,因式是整式;②被开方数中不含能开得尽方的因数或因式。
三、同类二次根式几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式。
四、二次根式的主要性质
(1)
(2)
(3)
(4)
五、二次根式的运算
(1)因式的外移和内移,如果被开方数中有的因式能开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先分解因式,变形为积的形式,再移因式到根号外面。反之,也可以将根号外面的正因式,平方后移到根号里面去。
(2)有理化因式与分母有理化
两个含有二次根式的代数式相乘,若它们的积不含二次根式,则称这两个代数式互为有理化因式。
把分母中的根号化去,叫做分母有理化。
(3)二次根式的加减法先把二次根式化成最简二次根式,再合并同类二次根式。
(4)二次根式的乘除法二次根式相乘(除),把被开方数相乘(除),所得的积(商)仍作积(商)的被开方数,并将运算结果化为最简二次根式。
(5)有理数的加法交换律、结合律、乘法交换律、结合律、乘法对加法的分配律,以及多项式的乘法公式,都适用于二次根式的运算。
命题热点
本节知识一直是中考的重点内容,涉及题型有填空、选择、计算、阅读等,特别是二次根式及其性质,二次根式与整式、分式的混合运算。
代数式:
1 内容:
A 用字母表示数(七上第三章)
B 从面积到乘法公式(七下第九章)
C 分式(八下第八章)
2 详解:
知识要点
①代数式的分类
二、同类项所含的字母相同并且相同字母的指数也相同的项叫做同类项,合并同类项时,只把系数相加,所含字母和字母的指数不变。
三、整式的运算
(1)整式的加减先去括号或添括号,再合并同类项。
(2)整式的乘除幂的运算性质①(,为整数,);②(,为整数,);③(为整数且);④(,为整数,)。
乘法公式(1)平方差:。(2)完全平方公式:。(3)立方和(差):
四、代数式的值用数值代替代数式里的字母,计
初三总复习 数学课本知识点归类总结 来自淘豆网m.daumloan.com转载请标明出处.