下载此文档

轨迹问题.doc


文档分类:高等教育 | 页数:约5页 举报非法文档有奖
1/5
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/5 下载此文档
文档列表 文档介绍
第五节轨迹问题
基本知识概要:
一、求轨迹的一般方法:
:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,易于表述成含x,y的等式,就得到轨迹方程,这种方法称之为直接法。用直接法求动点轨迹一般有建系,设点,列式,化简,证明五个步骤,最后的证明可以省略,但要注意“挖”与“补”。
:运用解析几何中一些常用定义(例如圆锥曲线的定义),可从曲线定义出发直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程。
:动点所满足的条件不易表述或求出,但形成轨迹的动点P(x,y)却随另一动点Q(x’,y’)的运动而有规律的运动,且动点Q的轨迹为给定或容易求得,则可先将x’,y’表示为x,y的式子,再代入Q的轨迹方程,然而整理得P的轨迹方程,代入法也称相关点法。
:求轨迹方程有时很难直接找到动点的横坐标、纵坐标之间的关系,则可借助中间变量(参数),使x,y之间建立起联系,然而再从所求式子中消去参数,得出动点的轨迹方程。
:求两动曲线交点轨迹时,可由方程直接消去参数,例如求两动直线的交点时常用此法,也可以引入参数来建立这些动曲线的联系,然而消去参数得到轨迹方程。可以说是参数法的一种变种。
:利用平面几何或解析几何的知识分析图形性质,发现动点运动规律和动点满足的条件,然而得出动点的轨迹方程。
:求圆、椭圆、双曲线以及抛物线的方程常用待定系数法求。
:求圆锥曲线中点弦轨迹问题时,常把两个端点设为并代入圆锥曲线方程,然而作差求出曲线的轨迹方程。
二、注意事项:
;定义法要充分联想定义、灵活动用定义;代入法要设法找到关系式x’=f(x,y), y’=g(x,y);参数法要合理选取点参、角参、斜率参等参数并学会消参;交轨法要选择参数建立两曲线方程再直接消参;几何法要挖掘几何属性、找到等量关系。
。在最后的结果出来后,要注意挖去或补上一些点等。
【典型例题选讲】
一、直接法题型:
例1 已知直角坐标系中,点Q(2,0),圆C的方程为,动点M到圆C的切线长与的比等于常数,求动点M的轨迹。
解:设MN切圆C于N,则。设,则
化简得
当时,方程为,表示一条直线。
当时,方程化为表示一个圆。
说明:求轨迹方程一般只要求出方程即可,求轨迹却不仅要求出方程而且要说明轨迹是什么。
练习:(待定系数法题型)在中,,且的面积为1,建立适当的坐标系,求以M,N为焦点,且过点P的椭圆方程。
解答过程参考教材P129页例1。
二、定义法题型:
例2 如图,某建筑工地要挖一个横截面为半圆的柱形土坑,挖出的土只能沿AP、BP运到P处,其中AP=100m,BP=150m,∠APB=600,问怎能样运才能最省工?
解:半圆上的点可分为三类:一是沿AP到P较近,二是沿BP到P较近,三是沿AP或BP一样近。其中第三类的点位于前两类的分界线上,设M为分界线上的任一点,则有,即,故M在以A,B为焦点的双曲线的右支上。建立如图直角坐标系,得边界的方程为,故运土时为了省工,在双曲线弧左侧的土沿AP运到P处,右侧的土沿BP运到P处,在曲线上面的土两边都可运。
说明:利用双曲线的定义可直接写出双曲线方程。
练习:

轨迹问题 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数5
  • 收藏数0 收藏
  • 顶次数0
  • 上传人zbfc1172
  • 文件大小678 KB
  • 时间2018-06-05
最近更新