本文是围绕半导体三极管(以下简称三极管)展开的讨论,由老师来回答同学提出的问题。
同学:三极管是由两个 PN 结构成的半导体器件,如果我们用两只二极管按一定的方式连接起来(见图 1 ),能不能组成一个三极管呢?
老师:这个问题很多初学者都会提出来。三极管绝不是两个 PN 结的简单凑合,两个二极管的组合不能形成一个三极管。我们以 NPN 型三极管为例(见图 2 ),两个 PN 结共用了一个 P 区——基区,基区做得极薄,只有几微米到几十微米,正是靠着它把两个 PN 结有机地结合成一个不可分割的整体,它们之间存在着相互联系和相互影响,使三极管完全不同于两个单独的 PN 结的特性。三极管在外加电压的作用下,形成基极电流、集电极电流和发射极电流,成为电流放大器件。
同学:怎样理解三极管的电流放大作用呢?
老师:三极管内部进行的物理过程是十分复杂的,初学者暂时不必去深入探讨。从应用的角度来讲,可以把三极管看作是一个电流分配器。一个三极管制成后,它的三个电流之间的比例关系就大体上确定了(见图 3 ),用式子来表示就是
β和α称为三极管的电流分配系数,其中β值大家比较熟悉,都管它叫电流放大系数。三个电流中,有一个电流发生变化,另外两个电流也会随着按比例地变化。例如,基极电流的变化量ΔI b = 10 μA , β= 50 ,根据ΔI c = βΔI b 的关系式,集电极电流的变化量ΔI c = 50×10 = 500μA ,实现了电流放大。
同学:为什么在三极管内部能够把基极电流变成比它大β倍的集电极电流呢?
老师:这个问题问得好。三极管自身并不能把小电流变成大电流,它仅仅起着一种控制作用,控制着电路里的电源,按确定的比例向三极管提供 I b 、 I c 和 I e 这三个电流。为了容易理解,我们还是用水流比喻电流(见图 4 )。这是粗、细两根水管,粗的管子内装有闸门,这个闸门是由细的管子中的水量控制着它的开启程度。如果细管子中没有水流,粗管子中的闸门就会关闭。注入细管子中的水量越大,闸门就开得越大,相应地流过粗管子的水就越多,这就体现出“以小控制大,以弱控制强”的道理。由图可见,细管子的水与粗管子的水在下端汇合在一根管子中。三极管的基极 b 、集电极 c 和发射极 e 就对应着图 4 中的细管、粗管和粗细交汇的管子。电路见图 5 ,若给三极管外加一定的电压,就会产生电流 I b 、 I c 和 I e 。调节电位器 RP 改变基极电流 I b , I c 也随之变化。由于 I c = βI b ,所以很小的 I b 控制着比它大β倍的 I c 。 I c 不是由三极管产生的,是由电源 在 I b 的控制下提供的,所以说三极管起着能量转换作用。
同学:为了得到比较高的放大倍数,选择三极管时是不是β越大越好?
老师:单纯从“放大”的角度来看,我们当然希望β值越大越好。可是,三极管接成共发射极放大电路(图 6 )时,从管子的集电极 c 到发射极 e 总会产生一有害的漏电流,称为穿透电流 I ceo ,它的大小与β值近似成正比, β值越大, I ceo 就越大。 I ceo 这种寄生电流不受 I b 控制,却成为集电极电流 I c 的一部分, I c = βI b + I ceo 。值得
详解半导体三极管 来自淘豆网m.daumloan.com转载请标明出处.