老师:这个问题很多初学者都会提出来。三极管绝不是两个PN结的简单凑合,两个二极管的组合不能形成一个三极管。我们以NPN型三极管为例(见图2),两个PN结共用了一个P区——基区,基区做得极薄,只有几微米到几十微米,正是靠着它把两个PN结有机地结合成一个不可分割的整体,它们之间存在着相互联系和相互影响,使三极管完全不同于两个单独的PN结的特性。三极管在外加电压的作用下,形成基极电流、集电极电流和发射极电流,成为电流放大器件。 同学:怎样理解三极管的电流放大作用呢? 老师:三极管内部进行的物理过程是十分复杂的,初学者暂时不必去深入探讨。从应用的角度来讲,可以把三极管看作是一个电流分配器。一个三极管制成后,它的三个电流之间的比例关系就大体上确定了(见图3),用式子来表示就是 β和α称为三极管的电流分配系数,其中β值大家比较熟悉,都管它叫电流放大系数。三个电流中,有一个电流发生变化,另外两个电流也会随着按比例地变化。例如,基极电流的变化量ΔIb=10μA,β=50,根据ΔIc=βΔIb的关系式,集电极电流的变化量ΔIc=50×10=500μA,实现了电流放大。 同学:为什么在三极管内部能够把基极电流变成比它大β倍的集电极电流呢? 老师:这个问题问得好。三极管自身并不能把小电流变成大电流,它仅仅起着一种控制作用,控制着电路里的电源,按确定的比例向三极管提供Ib、Ic和Ie这三个电流。为了容易理解,我们还是用水流比喻电流(见图4)。这是粗、细两根水管,粗的管子内装有闸门,这个闸门是由细的管子中的水量控制着它的开启程度。如果细管子中没有水流,粗管子中的闸门就会关闭。注入细管子中的水量越大,闸门就开得越大,相应地流过粗管子的水就越多,这就体现出“以小控制大,以弱控制强”的道理。由图可见,细管子的水与粗管子的水在下端汇合在一根管子中。三极管的基极b、集电极c和发射极e就对应着图4中的细管、粗管和粗细交汇的管子。电路见图5,若给三极管外加一定的电压,就会产生电流Ib、Ic和Ie。调节电位器RP改变基极电流 Ib,Ic也随之变化。由于Ic=βIb,所以很小的Ib控制着比它大β倍的Ic。Ic不是由三极管产生的,在Ib的控制下提供的,所以说三极管起着能量转换作用。同学:为了得到比较高的放大倍数,选择三极管时是不是β越大越好? 老师:单纯从“放大”的角度来看,我们当然希望β值越大越好。可是,三极管接成共发射极放大电路(图6)时,从管子的集电极c到发射极e总会产生一有害的漏电流,称为穿透电流Iceo,它的大小与β值近似成正比,β值越大,Iceo就越大。Iceo这种寄生电流不受Ib控制,却成为集电极电流 Ic的一部分,Ic=βIb+Iceo。值得注意的是,Iceo跟温度有密切的关系,温度升高,Iceo急剧变大,破坏了放大电路工作的稳定性。所以,选择三极管时,并不是β越大越好,一般取硅管β为40~150,锗管取40~80。 同学:三极管的穿透电流一般有多大呢?怎么测量穿透电流? 老师:在常温下,锗管的穿透电流比较大,一般由几十微安到几百微安,硅管的穿透电流就比较小,一般只有零点几微安到几微安。Iceo虽然不大,却与温度有着密切的关系,它们遵循着所谓的“加倍规则”,这就是温度每升高10℃,Iceo约增大一倍。例如,某锗管在常温20℃时,Iceo为20μA
详解半导体三极管 来自淘豆网m.daumloan.com转载请标明出处.