下载此文档

基于数学史的三角函数教学设计.doc


文档分类:中学教育 | 页数:约10页 举报非法文档有奖
1/10
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/10 下载此文档
文档列表 文档介绍
基于数学史的三角函数教学设计
作者简介:李春丹(1990-),女,汉,河北省衡水市冀州市,硕士在读,单位:陕西师范大学,研究方向:数学课程与教学论。
摘要:三角函数是三角学的重要组成部分,是刻画周期现象的一种非常重要的模型,是高中数学教学中很重要的一类函数。对学生而言,由于这部分知识很少有实际背景支持,完全在抽象的数学符号层面展开,使得许多学生感到枯燥,难理解,缺乏学习动力,而且学生学习之后存在着对三角函数的本质不理解,不明白为什么要学这些知识等问题,而解决这些问题就需要从三角函数的发生发展中去寻找答案。本论文选择了高中北师大版必修4,三角函数章节中重要的2个部分:弧度制和正弦函数的定义。是在许多人研究的基础上,首先是对弧度制的教学进行了综述的概括,继而开始对正弦函数的定义进行教学设计。
关键词:数学史;三角函数;教学设计
一、研究背景
国家教育部制订的《普通高中数学课程标准》的基本理念之一就是在高中数学课程中体现数学的文化价值,在适当的内容中提出对数学文化的学习要求,并明确规定数学史选讲纳入高中数学课程,但有关三角函数的历史却没有在课程中体现。现在数学史融入数学教学中的研究理论很强,但实际的具体操作方法很少,所以有很多数学史与数学教育的研究者提议要多研究一些关于数学史融入数学教学中的具体的案例。目前针对三角函数部分进行研究的人较少,主要查到了几篇关于数学史视角下的弧度制教学的论文,而且对正弦函数单独研究的人更少,这是由于正弦函数的历史比较零散,内容庞杂,研究时无法整段整段的研究。本文在前人研究的基础上,写了一份将数学史与弧度制教学结合的教学案例,继而通过设计正弦函数的模型来研究如何对正余弦函数的定义进行教学。
二、数学史视角下的弧度制教学
(一)关于数学史视角下弧度制教学的论述
课本中关于角的弧度制教学是通过测量同样的圆心角所对的弧长与半径,发现同样的圆心角所对的弧长与半径之比是常数。但相当多的高一学生感觉弧度很“糊涂”, 为了解决这个问题,研究数学历史上弧度制的产生及发展历程,发现其产生及发展的必要性,从数学史中找到答案则显得尤为重要。根据相关的论文,本人查到的几篇基于数学史的弧度制的教学,对弧度制教学引入数学史必要性提出以下证据:
,念产生的动机缺乏正确的理解。有人认为在角度制里,三角函数是以角为自变量的函数,对研究三角函数的性质带来不便,引入弧度制后,便能在角的集合与实数集合之间建立一一对应的关系,从而将三角函数定义在实数集或其子集上。事实上,无论是角度制还是弧度制,都能在角的集合与实数集合之间建立一一对应的关系。只不过在建立一一对应时,弧度制为十进制,不需要换算,方便;在角度制里,若将 n°的角对应实数 n 也能在角的集合与实数集合之间建立一一对应的关系,但是需要做 60进制的换算(例如 30°15′的角对应实数 ),不方便。但是使用的方便与否不足以说明弧度制产生的动机。
=nπ180,因此 l与 r 的比值只与圆心角的大小有关,而与所取的半径大小无关,因而把 l 与 r 的比值作为对应的圆心角的弧度数。当 l=r 时,比值为 1,所以把等于半径长的圆弧所对的圆心角作为 1 弧度的角。这样对学生讲也缺乏说服力,因为能够确定圆心角的大小而与所

基于数学史的三角函数教学设计 来自淘豆网m.daumloan.com转载请标明出处.

非法内容举报中心
文档信息
  • 页数10
  • 收藏数0 收藏
  • 顶次数0
  • 上传人aady_ing01
  • 文件大小0 KB
  • 时间2015-08-26