下载此文档

麦比乌斯圈(精选).doc


文档分类:行业资料 | 页数:约7页 举报非法文档有奖
1/7
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/7 下载此文档
文档列表 文档介绍
麦比乌斯圈
麦比乌斯圈(M bius strip, M bius band)是一种单侧、不可定向的曲面。(August Ferdinand Möbius, 1790-1868)发现而得名。将一个长方形纸条ABCD的一端AB固定,另一端DC扭转半周后,把AB和CD粘合在一起,得到的曲面就是麦比乌斯圈,也称麦比乌斯带。
目录
故事
麦比乌斯带的发现
实验一
实验二
麦比乌斯环
奇妙之处有三
六个特征
奇妙的启示
麦比乌斯圈与克莱因瓶
麦比乌斯圈的应用
麦比乌斯圈在数学中的应用
麦比乌斯圈在实际生活中的运用?
几何学与拓扑学结构
麦比乌斯简介(1790~1868)
艺术和科技
故事
麦比乌斯带的发现
实验一
实验二
麦比乌斯环
奇妙之处有三
六个特征
奇妙的启示
麦比乌斯圈与克莱因瓶
麦比乌斯圈的应用
麦比乌斯圈在数学中的应用
麦比乌斯圈在实际生活中的运用?
几何学与拓扑学结构
麦比乌斯简介(1790~1868)
艺术和科技
展开
故事
数学上流传着这样一个故事:有人曾提出,先用一张长方形的纸条,首尾相粘,做成一个纸圈,然后只允许用一种颜色,在纸圈上的一面涂抹,最后把整个纸圈全部抹成一种颜色,不留下任何空白。这个纸圈应该怎样粘?如果是纸条的首尾相粘做成的纸圈有两个面,势必要涂完一个面再重新涂另一个面,不符合涂抹的要求,能不能做成只有一个面、一条封闭曲线做边界的纸圈儿呢?

  
莫比乌斯环
麦比乌斯带的发现
对于这样一个看来十分简单的问题,数百年间,曾有许多科学家进行了认真研究,结果都没有成功。后来,德国的数学家麦比乌斯对此发生了浓厚兴趣,他长时间专心思索、试验,也毫无结果。
有一天,他被这个问题弄得头昏脑涨了,便到野外去散步。新鲜的空气,清凉的风,使他顿时感到轻松舒适,但他头脑里仍然只有那个尚未找到的圈儿。
一片片肥大的玉米叶子,在他眼里变成了“绿色的纸条儿”,他不由自主地蹲下去,摆弄着、观察着。叶子弯曲着耸拉下来,有许多扭成半圆形的,他随便撕下一片,顺着叶子自然扭的方向对接成一个圆圈儿,他惊喜地发现,这“绿色的圆圈儿”就是他梦寐以求的那种圆圈。
麦比乌斯回到办公室,裁出纸条,把纸的一端扭转180°,再将一端的正面和背面粘在一起,这样就做成了只有一个面的纸圈儿。
圆圈做成后,麦比乌斯捉了一只小甲虫,放在上面让它爬。结果,小甲虫不翻越任何边界就爬遍了圆圈儿的所有部分。麦比乌斯激动地说:“公正的小甲虫,你无可辩驳地证明了这个圈儿只有一个面。”麦比乌斯圈就这样被发现了。
做几个简单的实验,就会发现“麦比乌斯圈”有许多让我们感到惊奇而有趣的结果。弄好一个圈,粘好,绕一圈后可以发现,另一个面的入口被堵住了,原理就是这样啊.
实验一
如果在裁好的一张纸条正中间画一条线,粘成“麦比乌斯圈”,再沿线剪开,把这个圈一分为二,照理应得到两个圈儿,奇怪的是,剪开后竟是一个大圈儿。
实验二
如果在纸条上划两条线,把纸条三等分,再粘成“麦比乌斯圈”,用剪刀沿画线剪开,剪刀绕两个圈竟然又回到原出发点,猜一猜,剪开后的结果是什么,是一个大圈?还是三个圈儿?都不是。它究竟是什么呢?你自己动手做这个实验就知道了。你就会惊奇地发现,纸带

麦比乌斯圈(精选) 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数7
  • 收藏数0 收藏
  • 顶次数0
  • 上传人tuokeng5979595
  • 文件大小0 KB
  • 时间2015-09-22