下载此文档

论文(几种数学思想在数学问题中的应用).doc


文档分类:高等教育 | 页数:约11页 举报非法文档有奖
1/11
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/11 下载此文档
文档列表 文档介绍
几种数学思想在数学问题中的应用
10级数学教育(2)班高源鸿
摘要: 数学思想对中学数学的教学意义重大,在教学中渗透方程思想,分类讨论思想,数形结合思想,整体思想,化归思想,变换思想,辩证思想等多种数学思想方法,可以培养学生的思维能力,从而提高学生的学习效果。中学数学教学过程,实质上是运用各种教学理论进行数学知识教学的过程。在这个过程中,必然要涉及数学思想的问题。数学思想是人类思想文化宝库中的瑰宝,是数学的精髓,它对数学教学具有决定性的指导意义。
关键词:方程思想分类讨论思想数形结合思想整体思想化归思想变换思想辩证思想
前言
    数学教学的目的既要求学生掌握好数学的基础知识和基本技能,还要求发展学生的能力,培养他们良好的个性品质和学习习惯。在实现教学目的的过程中,数学思想方法对于打好“双基”和加深对知识的理解、培养学生的思维能力有着独到的优势,它是学生形成良好认知结构的纽带,是由知识转化为能力的桥梁。因此,在数学教学中,教师除了基础知识和基本技能的教学外,还应重视数学思想方法的渗透,注重对学生进行数学思想方法的培养,这对学生今后的数学学习和数学知识的应用将产生深远的影响。从初中阶段就重视数学思想方法的渗透,将为学生后续学习打下坚实的基础,会使学生终生受益。
1、中学数学教学中应运用的思想方法
    (1)方程思想
众所周知,方程思想是初等代数思想方法的主体,应用十分广泛,可谓数学大厦基石之一,在众多的数学思想中显得十分重要。所谓方程思想,主要是指建立方程(组)解决实际问题的思想方法。教材中大量出现这种思想方法,如列方程解应用题,求函数解析式,利用根的判别式、根于系数关系求字母系数的值等。教学时,可有意识的引导学生发现等量关系从而建立方程。如讲“利用待定系数法确定二次函数解析式”时,可启发学生去发现确定解析式的关键是求出各项系数,可把他们看成三个“未知量”,告诉学生利用方程思想来解决,那学生就会自觉的去找三个等量关系建立方程组。
例:某地为促进淡水鱼养殖业的发展,将价格控制在适当范围内,决定对淡水鱼养殖提供政府补贴,设淡水鱼的市场价格为x元/千克,政府补贴为t元/千克,根据市场调查,当时,淡水鱼的市场日供应量P千克与市场日需求量Q千克近似地满足关系:
当P=Q时的市场价格称为市场平衡价格。
(1)将市场平衡价格表示为政府补贴的函数,并求出函数的定义域;
(2)为使市场平衡价格不高于每千克10元,政府补贴至少为每千克多少元?
解:(1)依题设有
化简得
当判别式时,
可得
由,得不等式组


解不等式组①,得,不等式组②无解。
故所求的函数关系式为
函数的定义域为[0,]
(2)为使,应有
化简得
解得或,由于,知
从而政府补贴至少为每千克1元。
在这里如果单讲解题步骤,就会显得呆板、僵硬,学生只知其然,不知其所以然。与此同时,还要注意渗透其他与方程思想有密切关系的数学思想,诸如换元,消元,降次,函数,化归,整体,分类等思想,这样可起到拨亮一盏灯,照亮一大片的作用。
    (2)分类讨论思想
分类讨论即根据教学对象的共同性与差异性,把具有相同属性的归入一类,把具有不同属性的归入另一类。分类是数学发现的重要手段。在教学中,如果对学过的知识恰当地进行分类,就可以使大量纷繁的知识具有条理性。例如,对三角形全等识别方法的探索,教材中的思考题:如果两个三角形有三个部分(边或角)分别对应相等,那么有哪几种可能的情况?
例:在△ABC中,∠B=25°,AD是BC上的高,并且,则∠BCA的度数为_____________。
解析:因未指明三角形的形状,故需分类讨论。
如图1,当△ABC的高在形内时,由,得△ABD∽△CAD,进而可以证明△ABC为直角三角形。由∠B=25°。可知∠BAD=65°。所以∠BCA=∠BAD=65°。

如图2,当高AD在形外时,此时△ABC为钝角三角形。
由,得△ABD∽△CAD
所以∠B=∠CAD=25°
∠BCA=∠CAD+∠ADC=25°+90°=115°
同时,教材中对处理几种识别方法时也采用分类讨论,由简到繁,一步步得出,教学时要让学生体验这种思想方法。
    (3)数形结合思想
数和式是问题的抽象和概括、图形和图像是问题的具体和直观的反映。
例: 已知二次函数y=f1(x)的图象以原点为顶点且过点(1,1),反比例函数y=f2(x)的图象与直线y=x两个交点间的距离为8,f(x)=f1(x)+f2(x).
(1)求函数f(x)的表达式;
(2)证明:当a>3时,关于x的方程f(x)=f(a)有三个实数解。
分析用数形结合思想求f(x)-f(a)=0解的个数.
解:(1)由已知,设f1(x)=bx2,

论文(几种数学思想在数学问题中的应用) 来自淘豆网m.daumloan.com转载请标明出处.

非法内容举报中心
文档信息
  • 页数11
  • 收藏数0 收藏
  • 顶次数0
  • 上传人1006108867
  • 文件大小0 KB
  • 时间2013-08-07