八年级数学下册《分式》知识点归纳北师大版第三章分式一、分式 1、两个整数不能整除时,出现了分数;类似地,当两个整式不能整除时,就出现了分式. 整式A除以整式B,,那么称为分式,对于任意一个分式,分母都不能为零. 2、整式和分式统称为有理式,即有: 3、进行分数的化简与运算时,常要进行约分和通分,其主要依据是分数的基本性质: 分式的分子与分母都乘以同一个不等于零的整式,分式的值不变. 4、一个分式的分子、分母有公因式时,可以运用分式的基本性质,把这个分式的分子、分母同时除以它的们的公因式,也就是把分子、分母的公因式约去,这叫做约分. 二、分式的乘除法 1、分式乘以分式,用分子的积做积的分子,分母的积做积的分母;分式除以以分式,把除式的分子、分母颠倒位置后,与被除式相乘. 2、分式乘方,把分子、分母分别乘方. 逆向运用,当n为整数时,仍然有成立. 3、分子与分母没有公因式的分式,叫做最简分式. 三、分式的加减法 1、分式与分数类似,,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分. 2、分式的加减法: 分式的加减法与分数的加减法一样,分为同分母的分式相加减与异分母的分式相加减. 同分母的分式相加减,分母不变,把分子相加减; 上述法则用式子表示是: 异号分母的分式相加减,先通分,变为同分母的分式,然后再加减; 上述法则用式子表示是: 3、概念内涵: 通分的关键是确定最简分母,其方法如下:最简公分母的系数,取各分母系数的最小公倍数;最简公分母的字母,取各分母所有字母的最高次幂的积,如果分母是多项式,则首先对多项式进行因式分解. 四、分式方程 1、解分式方程的一般步骤: ①在方程的两边都乘最简公分母,约去分母,化成整式方程; ②解这个整式方程; ③把整式方程的根代入最简公分母,看结果是不是零,使最简公母为零的根是原方程的增根,必须舍去. 2、列分式方程解应用题的一般步骤: ①审清题意; ②设未知数; ③根据题意找相等关系,列出方程; ④解方程,并验根; ⑤写出答案.
八年级数学下册《分式》知识点归纳北师大版 来自淘豆网m.daumloan.com转载请标明出处.