下载此文档

排列组合用A还是C的技巧.doc


文档分类:IT计算机 | 页数:约3页 举报非法文档有奖
1/3
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/3 下载此文档
文档列表 文档介绍
,首先必须认真审题,明确是属于排列问题还是组合问题,或者属于排列与组合的混合问题,其次要抓住问题的本质特征,灵活运用基本原理和公式进行分析,同时还要注意讲究一些策略和方法技巧。下面介绍几种常用的解题方法和策略。一、合理分类与准确分步法(利用计数原理)解含有约束条件的排列组合问题,应按元素性质进行分类,按事情发生的连续过程分步,保证每步独立,达到分类标准明确,分步层次清楚,不重不漏。例1、五个人排成一排,其中甲不在排头,乙不在排尾,不同的排法有():由题意可先安排甲,并按其分类讨论:1)若甲在末尾,剩下四人可自由排,有P(4,4)=24种排法;2)若甲在第二,三,四位上,则有C(3,1)*C(3,1)*P(3,3)=54种排法,由分类计数原理,排法共有78种,选C。解排列与组合并存的问题时,一般采用先选(组合)后排(排列)的方法解答。例2、4个不同小球放入编号为1,2,3,4的四个盒中,恰有一空盒的方法有多少种?分析:因恰有一空盒,故必有一盒子放两球。1)选:从四个球中选2个有C(4,2)种,从4个盒中选3个盒有C(4,3)种;2)排:把选出的2个球看作一个元素与其余2球共3个元素,对选出的3盒作全排列有P(3,3)种,故所求放法有C(4,2)*C(4,3)*P(3,3)=144种。二、特殊元素与特殊位置优待法对于有附加条件的排列组合问题,一般采用:先考虑满足特殊的元素和位置,再考虑其它元素和位置。例3、用0,2,3,4,5,五个数字,组成没有重复数字的三位数,其中偶数共有()。。30个C。40个D。60个[分析]由于该三位数为偶数,故末尾数字必为偶数,又因为0不能排首位,故0就是其中的“特殊”元素,应该优先安排,按0排在末尾和0不排在末尾分两类:1)0排末尾时,有P(4,2)=12个,2)0不排在末尾时,则有C(2,1)C(3,1)C(3,1)=18个,由分数计数原理,共有偶数30个,选B。例4、马路上有8只路灯,为节约用电又不影响正常的照明,可把其中的三只灯关掉,但不能同时关掉相邻的两只或三只,也不能关掉两端的灯,那么满足条件的关灯方法共有多少种?分析:表面上看关掉第1只灯的方法有6种,关第二只,第三只时需分类讨论,十分复杂。若从反面入手考虑,每一种关灯的方法对应着一种满足题设条件的亮灯与关灯的排列,于是问题转化为“在5只亮灯的4个空中插入3只暗灯”的问题。故关灯方法种数为C(4,3)=4。三、插空法、捆绑法对于某几个元素不相邻的排列问题,可先将其他元素排好,再将不相邻元素在已排好的元素之间及两端空隙中插入即可。例5、7人站成一排照相,若要求甲、乙、丙不相邻,则有多少种不同的排法?分析:先将其余四人排好有P(4,4)种排法,再在这人之间及两端的5个“空”中选三个位置让甲乙丙插入,则有P(5,3)种方法,这样共有P(4,4)*P(5,3)=1440种不同排法。对于局部“小整体”的排列问题,可先将局部元素捆绑在一起看作一个元,与其余元素一同排列,然后在进行局部排列。例6、7人站成一排照相,甲、乙、丙三人相邻,有多少种不同排法?分析:把甲、乙、丙三人看作一个“元”,与其余4人共5个元作全排列,有P(5,5)种排法,而甲乙、丙、之间又有P(3,3)种排法,故

排列组合用A还是C的技巧 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数3
  • 收藏数0 收藏
  • 顶次数0
  • 上传人88jmni97
  • 文件大小65 KB
  • 时间2019-01-26
最近更新