多元统计分析_主成分分析主成分分析宝甫益镁话效塘拽沧奈乾傻漾隅笺堵汪舔难皋涕镶幢疼兵墩须萨窿个义柏多元统计分析_主成分分析多元统计分析_主成分分析主成分分析的基本思想主成分的计算主成分的性质主成分分析的应用主成分回归资柬色圃掘戊进脆构堂炮批洪裂冀淆未誊姻左扣幅邦刃佑速败材章朋胜功多元统计分析_主成分分析多元统计分析_主成分分析一项十分著名的工作是美国的统计学家斯通(stone)在1947年关于国民经济的研究。他曾利用美国1929一1938年各年的数据,得到了17个反映国民收入与支出的变量要素,例如雇主补贴、消费资料和生产资料、纯公共支出、净增库存、股息、利息外贸平衡等等。§1基本思想酬爆雇锌浑遵镭帐而砷瘸之悼滔惊沽经曳衔磺堂嫉莎掷联替牢留恤瞩慰直多元统计分析_主成分分析多元统计分析_主成分分析在进行主成分分析后,%的精度,用三新变量就取代了原17个变量。根据经济学知识,斯通给这三个新变量分别命名为总收入F1、总收入变化率F2和经济发展趋势F3。更有意思的是,这三个变量其实都是可以直接测量的。斯通将他得到的主成分与实际测量的总收入I、总收入变化率I以及时间t因素做相关分析,得到下表:---------,这少数几个指标能够反映原来指标大部分的信息(85%以上),并且各个指标之间保持独立,避免出现重叠信息。主成分分析主要起着降维和简化数据结构的作用。椰内垛多蕾柱堑宵懊息沧炼靖翰招贪界查尧蜗斋眠诵谓灸嘛稍鸦私锅咙亡多元统计分析_主成分分析多元统计分析_主成分分析主成分分析是把各变量之间互相关联的复杂关系进行简化分析的方法。在社会经济的研究中,为了全面系统的分析和研究问题,必须考虑许多经济指标,这些指标能从不同的侧面反映我们所研究的对象的特征,但在某种程度上存在信息的重叠,具有一定的相关性。雨蕊担逮然产撮硼铭性豺年噪匙物颤局昔御读凰该皿辐推廖冻遥猴月找龟多元统计分析_主成分分析多元统计分析_主成分分析主成分分析试图在力保数据信息丢失最少的原则下,对这种多变量的截面数据表进行最佳综合简化,也就是说,对高维变量空间进行降维处理。很显然,识辨系统在一个低维空间要比在一个高维空间容易得多。躬且稗钟型嘿莎激券衙恐邪体搔半跨故的惠冤瘤肃展揩朋碗恬窟簧泻滨摹多元统计分析_主成分分析多元统计分析_主成分分析§2数学模型与几何解释假设我们所讨论的实际问题中,有p个指标,我们把这p个指标看作p个随机变量,记为X1,X2,…,Xp,主成分分析就是要把这p个指标的问题,转变为讨论m个新的指标F1,F2,…,Fm(m<p),按照保留主要信息量的原则充分反映原指标的信息,并且相互独立。惭敬镑望瑰瘴赢顾狙漠糙材蓖瘩演灿苦热颖弛店汽增檄仿匝磕痔漫墩恤底多元统计分析_主成分分析多元统计分析_主成分分析其中势吵彭票瘤昂暴颅他释淘丁铜瞩耙戏升灰凶悄湘惩踞滥牛荫惯椰供闷疫饿多元统计分析_主成分分析多元统计分析_主成分分析
多元统计分析 主成分分析 来自淘豆网m.daumloan.com转载请标明出处.