2011全国各省市中考数学压轴题
25、(2011•北京)如图,在平面直角坐标系xOy中,我把由两条射线AE,BF和以AB为直径的半圆所组成的图形叫作图形C(注:不含AB线段).已知A(﹣1,0),B(1,0),AE∥BF,且半圆与y轴的交点D在射线AE的反向延长线上.
(1)求两条射线AE,BF所在直线的距离;
(2)当一次函数y=x+b的图象与图形C恰好只有一个公共点时,写出b的取值范围;
当一次函数y=x+b的图象与图形C恰好只有两个公共点时,写出b的取值范围;
(3)已知▱AMPQ(四个顶点A,M,P,Q按顺时针方向排列)的各顶点都在图形C上,且不都在两条射线上,求点M的横坐标x的取值范围.
26、(2011•河北)如图,在平面直角坐标系中,点P从原点O出发,沿x轴向右以毎秒1个单位长的速度运动t秒(t>0),抛物线y=x2+bx+c经过点O和点P,已知矩形ABCD的三个顶点
为 A (1,0),B (1,﹣5),D (4,0).
(1)求c,b (用含t的代数式表示):
(2)当4<t<5时,设抛物线分别与线段AB,CD交于点M,N.
①在点P的运动过程中,你认为∠AMP的大小是否会变化?若变化,说明理由;若不变,求出∠AMP的值;
②求△MPN的面积S与t的函数关系式,并求t为何值时,S=218;
(3)在矩形ABCD的内部(不含边界),把横、纵坐标都是整数的点称为“好点”.若抛物线将这些“好点”分成数量相等的两部分,请直接写出t的取值范围.
28.(2011•江苏南京)问题情境:已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?
数学模型:设该矩形的长为x,周长为y,则y与x的函数关系式为.
探索研究:⑴我们可以借鉴以前研究函数的经验,先探索函数的图象性质.
1
x
y
O
1
3
4
5
2
2
3
5
4
-1
-1
填写下表,画出函数的图象:
x
……
1
2
3
4
……
y
……
……
②观察图象,写出该函数两条不同类型的性质;
③在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,还
(x>0)的最小值.
解决问题:⑵用上述方法解决“问题情境”中的问题,直接写出答案.
28.(2011•江苏杨州)在中,是边的中点,,动点从点出发沿射线运动,且始终保持设运动时间为秒().
(1)与相似吗?以图1为例说明理由;
(2)若厘米.
①求动点的运动速度;
②设的面积为(平方厘米),求与的函数关系式;
(3)探求三者之间的数量关系,以图1为例说明理由.
A
B
P
N
Q
C
M
A
B
C
N
M
图1
图2(备用图)
28、(2011•江苏连云港)如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,点P在AB上,AP=2,点E、F同时从点P出发,分别沿PA、PB以每秒1个单位长度的速度向点A、B匀速运动,点E到达点A后立刻以原速度沿AB向点B运动,点F运动到点B时停止,、F运动过程中,以EF为边作正方形EFGH,使它与△AB
2011全国各地中考数学压轴题 来自淘豆网m.daumloan.com转载请标明出处.