◆十进制转二进制:二进制是计算技术中广泛采用的一种数制。二进制数据是用0和1两个数码来表示的数。它的基数为2,进位规则是“逢二进一”,借位规则是“借一当二”,由18世纪德国数理哲学大师莱布尼兹发现。当前计算机系统使用的基本上是二进制系统。用2辗转相除至结果为1将余数和最后的1从下向上倒序写就是结果例如302302/2=151余0151/2=75余175/2=37余137/2=18余118/2=9余09/2=4余14/2=2余02/2=1余0故二进制为100101110◆二进制转十进制从最后一位开始算,依次列为第0、1、2...位第n位的数(0或1)乘以2的n次方得到的结果相加就是答案例如::第0位:1乘2的0次方=11乘2的1次方=20乘2的2次方=01乘2的3次方=80乘2的4次方=01乘2的5次方=321乘2的6次方=640乘2的7次方=0然后:1+2+0+8+0+32+64+0==,现在对二进制和十进制之间的换算有了初步的了解了吧,下面,我们就进一步深入了解二者之间的其他换算规律:个人收集整理勿做商业用途二进制转十进制,十进制转二进制的算法一、二进制数转换成十进制数 由二进制数转换成十进制数的基本做法是,把二进制数首先写成加权系数展开式,然后按十进制加法规则求和。这种做法称为"按权相加"法。二、十进制数转换为二进制数 十进制数转换为二进制数时,由于整数和小数的转换方法不同,所以先将十进制数的整数部分和小数部分分别转换后,再加以合并。 十进制整数转换为二进制整数采用"除2取余,逆序排列"法。具体做法是:用2去除十进制整数,可以得到一个商和余数;再用2去除商,又会得到一个商和余数,如此进行,直到商为零时为止,然后把先得到的余数作为二进制数的低位有效位,后得到的余数作为二进制数的高位有效位,依次排列起来。 十进制小数转换成二进制小数采用"乘2取整,顺序排列"法。具体做法是:用2乘十进制小数,可以得到积,将积的整数部分取出,再用2乘余下的小数部分,又得到一个积,再将积的整数部分取出,如此进行,直到积中的小数部分为零,或者达到所要求的精度为止。 然后把取出的整数部分按顺序排列起来,先取的整数作为二进制小数的高位有效位,后取的整数作为低位有效位。 (1)二进制转十进制方法:"按权展开求和" 例: ()2=(1×23+0×22+1×21+1×20+0×2-1+1×2-2)10 =(8+0+2+1+0+)10 =()10 (2)十进制转二进制·十进制整数转二进制数:"除以2取余,逆序输出" 例:(89)10=(1011001)2 289 244……1 222……0 211……0 25……1 22……1 21……0 0……1 ·十进制小数转二进制数:"乘以2取整,顺序输出" 例: ()10=()2 X2 X2 X2 例:: 即:()8=()2 例:: 即:()2=()8 :: 0**********.1001 即:()16=(**********.1001)2例:: 即:()2=()16 二进制,(整数及小数部分):1、把该十进制数,用二因式分解,取余。 以235为例,转为二进制 235除以2得117,余1 117除以2得58,余1 58除以2得29,余0 29除以2得14,余1 14除以2得7,余0 7除以2得3,余1 3除以2得1,余1 从得到的1开始写起,余数倒排,加在它后面,就可得11101011。2、把十进制中的小数部份,转为二进制。 把该小数不断乘2,取整,直至没有小数为止,注意不是所有小数都能转为二进制! , ,取整数1 ,取整数1,。 1、二进制数、八进制数、十六进制数转十进制数有一个公式:二进制
十进制进制进制十进制之间的换算规律 来自淘豆网m.daumloan.com转载请标明出处.