高中数学不等式专题教师版高考动态考试内容:©版权所有:数学探索©版权所有)©版权所有)掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,©版权所有)掌握分析法、综合法、©版权所有)©版权所有)理解不等式│a│-│b│≤│a+b│≤│a│+│b│ 二、不等式知识要点不等式的基本概念不等(等)号的定义:不等式的分类:绝对不等式;条件不等式;(1)(对称性)(2)(传递性)(3)(加法单调性)(4)(同向不等式相加)(5)(异向不等式相减)(6)(7)(乘法单调性)(8)(同向不等式相乘)(异向不等式相除)(倒数关系)(11)(平方法则)(12)(开方法则)(1)(2)(当仅当a=b时取等号)(3)如果a,b都是正数,那么(当仅当a=b时取等号)极值定理:若则:如果P是定值,那么当x=y时,S的值最小;如果S是定值,那么当x=y时,:一正、二定、三相等.(当仅当a=b=c时取等号)(当仅当a=b时取等号)(7)(1)平均不等式:如果a,b都是正数,那么(当仅当a=b时取等号)即:平方平均≥算术平均≥几何平均≥调和平均(a、b为正数):特别地,(当a=b时,)幂平均不等式:注:例如:.常用不等式的放缩法:①②(2)柯西不等式:(3)琴生不等式(特例)与凸函数、凹函数若定义在某区间上的函数f(x),对于定义域中任意两点有则称f(x)为凸(或凹)、综合法、分析法、换元法、反证法、放缩法、(1)整式不等式的解法(根轴法).步骤:正化,求根,标轴,穿线(偶重根打结),①一元一次不等式ax>b解的讨论;②一元二次不等式ax2+bx+c>0(a≠0)解的讨论.(2)分式不等式的解法:先移项通分标准化,则(3)无理不等式:转化为有理不等式求解(4).指数不等式:转化为代数不等式(5)对数不等式:转化为代数不等式(6)含绝对值不等式应用分类讨论思想去绝对值;应用数形思想;应用化归思想等价转化注:常用不等式的解法举例(x为正数):①②类似于,③三、利用均值不等式求最值的方法均值不等式当且仅当a=b时等号成立)是一个重要的不等式,利用它可以求解函数最值问题。对于有些题目,可以直接利用公式求解。但是有些题目必须进行必要的变形才能利用均值不等式求解。下面是一些常用的变形方法。一、,求的最大值。解析:由知,,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。注意到为定值,故只需将凑上一个系数即可。当且仅当,即x=2时取等号。所以当x=2时,的最大值为8。评注:本题无法直接运用均值不等式求解,但凑系数后可得到和为定值,从而可利用均值不等式求最大值。,求函数的最大值。解析:由题意知,首先要调整符号,又不是定值,故需对进行凑项才能得到定值。∵∴当且仅当,即时等号成立。评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。。解析:本题看似无法运用均值不等式,不妨将分子配方凑出含有(x+1)的项,再将其分离。当,即时(当且仅当x=1时取“=”号)。当,即时(当且仅当x=-3时取“=”号)。∴的值域为。评注:分式函数求最值,通常化成,g(x)恒正或恒负的形式,然后运用均值不等式来求最值。二、,求的最小值。解法1:不妨将乘以1,而1用a+2b代换。当且仅当时取等号,由即时,的最小值为。解法2:将分子中的1用代换。评注:本题巧妙运用“1”的代换,得到,而与的积为定值,即可用均值不等式求得的最小值。三、。解析:变量代换,令,则当t=0时,y=0当时,当且仅当,即时取等号。故。评注:本题通过换元法使问题得到了简化,而且将问题转化为熟悉的分式型函数的求最值问题,从而为构造积为定值创造有利条件。四、。解析:注意到的和为定值。又,所以当且仅当,即时取等号。故。评注:本题将解析式两边平方构造出“和为定值”,为利用均值不等式创造了条件。总之,我们利用均值不等式求最值时,一定要注意“一正二定三相等”,同时还要注意一些变形技巧,积极创造条件利用均值不等式。高中数学一轮复习专讲专练(教材回扣+考点分类+课堂内外+限时训练):基本不等式一、>0,b>0,且ln(a+
关于高级高中数学不等式知识点总结归纳教师版 来自淘豆网m.daumloan.com转载请标明出处.