证明三点共线问题的方法15117证明三点共线问题的方法1、利用梅涅劳斯定理的逆定理例1、如图1,圆内接ΔABC为不等边三角形,过点A、B、C分别作圆的切线依次交直线BC、CA、AB于、、,求证:、、三点共线。解:记,,知、、三点共线。2、利用四点共圆(在圆内,主要由角相等或互补得到共线)例2、如图,以锐角ΔABC的一边BC为直径作⊙O,过点A作⊙O的两条切线,切点为M、N,:M、H、N三点共线。(96中国奥数)证明:射线AH交BC于D,显然AD为高。记AB与⊙O的交点为E,易知C、H、E三点共线。联结OM、ON、DM、DN、MH、NH,易知,∴A、M、O、D、N五点共圆,更有A、M、D、N四点共圆,此时,因为(B、D、H、E四点共圆),即;又,所以,故同理,。因为,所以,M、H、N三点共线。3、利用面积法如果,点E、F位于直线MN的异侧,则直线MN平分线段EF,即M、N与EF的中点三点共线。、如图,延长凸四边形ABCD的边AB、DC交于点E,延长边AD、BC交于点F,又M、N、L分别是AC、BD、EF的中点,求证:M、N、L三点共线。证明:设BC的中点为O,辅助线如图所示,由可知,点O必在内,此时,同理,。因此。此时,直线MN平分EF,即M、N、L三点共线。注:利用梅涅劳斯定理的逆定理也可证明此题。4、利用同一法尽管同一法是一种间接证法,但它却是一各很有用的证法,观察例4后,你会感到,同一法在证明三点共线问题时,也有其用武之地。、如图4(a),凸四边形ABCD的四边皆与⊙O相切,切点分别为P、M、Q、N,设PQ与MN交于S,证明:A、S、C三点共线。证明:如图4(b),令PQ与AC交于,易证互补。而,则,故。再令MN与AC交于。同理可得但,所以。利用合比性质得,。因此,,可断定与必重合于点S,故A、S、C三点共线。注:观察本题图形,显然还可证得B、S、D三点共线;换言之,AC、BD、PQ、MN四线共点。5、利用位似形的性质如果与是两个位似三角形,点O为位似中心,那么不仅A、、O;B、、O;C、、O分别三点共线,而且、的两个对应点与位似中心O也三点共线,位似形的这种性质,对于证明三点共线,颇为有用。例5、如图,内部的三个等圆⊙、⊙、⊙两两相交且都经过点P,其中每两个圆都与的一边相切,已知O、I分别是的外心、内心,证明:I、P、O三点共线。证明:联结、、。由已知得、、。可断定与是一对位似三角形,且易知的内心I是两者的位似中心。因为⊙、⊙、⊙为等圆,即,所以点P是的外心。又点O是的外心,故P、O两点是两个位似三角形的对应点,利用位似形的性质,即得I、P、O三点共线。利用反证法有的几何题利用直接证法很难,而用反证法却能很快达到预期目的。例6、如图,梯形ABCD中、DC//AB,对形内的三点、、,如果到四边距离之和皆相等,那么,、、三点共线,试证之。证明:先看两点,设直线分别交AD、BC于M、N,于,于,于,于。因为DC//AB,则点到AB、CD的距离之和等于点到AB、CD的距离之和。由已知可得。过点作AD的平行线、过点作BC的平行线得交点P(由于AD与BC不平行)。记交于G,交于H。观察上式有。所以,。因为有两条高,所以,是等腰三角形,则。故。再用反证法证明点一定在上:假设点不在上,联结并延长分别交AD、BC于,易知
证明三点共线问题的方法 来自淘豆网m.daumloan.com转载请标明出处.