四点共圆基本判断方法教学文案.ppt四点共圆的证明五个基本判断方法集结1. 若四个点到一个定点的距离相等,则这四个点共圆。2. 若一个四边形的一组对角互补(和为180°),则这个四边形的四个点共圆。3. 若一个四边形的外角等于它的内对角,则这个四边形的四个点共圆。4. 若两个点在一条线段的同旁,并且和这条线段的两端连线所夹的角相等,那么这两个点和这条线的两个端点共圆。5同斜边的直角三角形的顶点共圆。,(和为180°),则这个四边形的四个点共圆若∠A+∠C=180°或∠B+∠D=180°,则点A、B、C、D四点共圆已知:四边形ABCD中,∠A+∠C=180°求证:四边形ABCD内接于一个圆(A,B,C,D四点共圆证明:用反证法 过A,B,D作圆O,假设C不在圆O上,则C在圆外或圆内,若C在圆外,设BC交圆O于C’,连结DC’,根据圆内接四边形的性质得∠A+∠DC’B=180°,∵∠A+∠C=180°∴∠DC’B=∠C 这与三角形外角定理矛盾,故C不可能在圆外。类似地可证C不可能在圆内。 ∴C在圆O上,也即A,B,C,D四点共圆。,则这个四边形的四个点共圆若∠B=∠CDE,则A、B、C、D四点共圆证法同上例如图所示,已知四边形ABCD是平行四边形,过点A和点B的圆与AD、BC分别交于E、F点。求证:C、D、E、F四点共圆。分析:欲证C、D、E、F四点共圆,可证以该四点构成的四边形中,一组对角互补或外角等于内对角即可。由此,连接EF构成四边形EFCD后,证明∠BFE=∠D即可。证明:连接EF,∵四边形ABFE是圆内接四边形,∴∠A+∠BFE=180°。又∵四边形ABCD是平行四边形,∴∠A+∠D=180°。∴∠BFE=∠D。∴C、D、E、,并且和这条线段的两端连线所夹的角相等,那么这两
四点共圆基本判断方法教学文案 来自淘豆网m.daumloan.com转载请标明出处.