整式乘法说图xya问题㈠王老先生准备把长为x米,宽为y米的这块地向外扩建,使得长再增加a米,则扩建后地的面积为:y(a+x)或xy+ya发现:y(a+x)=xy+ya问题㈡王老先生在刚才扩建的基础上再向外扩建,使得宽再增加b米,则扩建后地的面积为:xyab(x+a)(y+b)或xy+ay+bx+ab发现:(x+a)(y+b)=xy+ay+bx+ab在前面学习的启发下,小明同学计算(2a+b)(a+b)时,认为除了运用整式乘法法则计算外,也可以类似地用下面的图形求出结果,你同意他的看法吗?如果同意,结果是什么?学以致用abbaa结果:(2a+b)(a+b)=2a2+3ab+b2abbaaa2a2abababb2变形1:如果王老先生这块地是边长为x米的正方形向外扩建时,使长增加a米,宽增加b米,则扩建后的面积为:xxab(x+a)(x+b)或x2+(a+b)x+ab发现:(x+a)(x+b)=x2+(a+b)x+ab口算:(x+5)(x+2)=(x-3)(x+1)=(x-5)(x-2)=x2+7x+10x2-2x-3x2-7x+10变形2:如果王老先生将这块边长为x米的正方形地向外扩建后时,长和宽都增加y米,则扩建后的面积为:xxyy(x+y)2或x2+2xy+y2发现:(x+y)2=x2+2xy+y2xxyy(x-y)2=x2–2xy+y2发现:变形3:如果王老先生准备在这块边长为x的土地上修建一个小正方形的花坛,使其边长为x-y,其余部分为空地,留作道路用,则花坛面积为:(x-y)2或x2–2xy+y2我是小小设计师与上题类似,你能自己设计出一个图形来计算(2a+b)2吗?aaaabb(1)若用1张A型卡片,2张B型卡片,则需C型卡片______张。此时正方形的边长是_______,面积是___________。如图所示,现有若干张不同形状的A型、B型、C型三种卡片。李明同学想利用它们拼接成一个大的正方形。aaABabCbb继续攀登1a+ba2+2ab+b2继续攀登aaABabCbb(2)若用1张A型卡片,4张B型卡片,则需C型卡片______张。此时正方形的边长是_______,面积是___________。4a+2ba2+4ab+4b2
几何图形与整式乘法 2 来自淘豆网m.daumloan.com转载请标明出处.