下载此文档

用随机算法求第k小项.docx


文档分类:高等教育 | 页数:约8页 举报非法文档有奖
1/8
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/8 下载此文档
文档列表 文档介绍
问题描述设A[1,n]是一个有n个数组成的无序数列,寻找其第k小元素就是将A按照非递减的顺序排列后,新序列中的第k个元素。寻找第k小元素最直接的方法就是直接将A进行排序, 然后取出第k个元素,可是此类方法时间复杂度较高,至少需要Ω(nlogn)时间,因为基本所有已学的排序方法在最坏情况下都需要这么多时间。在第三章中老师课上教导了利用分治法求第k小元素的算法,其时间复杂度为O(n)。其基本思想如下:在分治法递归调用的每一个划分步骤中都将舍弃一定比例的元素,而在剩余元素中寻找目标。故在我的理解中这种分治法的性能主要依赖于每次递归调用能舍去的元素的比例,以及为舍弃这些元素所花费的代价。在之后的学习中,我们又接触到了随机算法,不由思考,分治法中的划分能够不能够经过随机算法来随机选择一个位置,然后根据这个位置进行舍弃序列中的元素,有没有办法改进算法。随机选择算法Algorithm:RandomSelect(A[low,high],k)输入:数组A[low,...high]和整数k,1≤k≤high-low+1输出:A[low…high]中的第k小元素v←random(low,high)x←A[v]将A[low…high]分成三部分A1={a|a<x}A2={a|a=x}A3={a|a>x}//Θ(n)case|A1|≥k:returnRandomSelect(A1[1,|A1|],k)|A1|+|A2|≥k:returnx|A1|+|A2|<k:returnRandomSelect(A3[1,|A3|],k-|A1|-|A2|)endcase该部分算法ppt与书上已经提到,其时间复杂度的期望比较次数C(n)≤4n,另外每个元素与基准元素x至少比较一次。故C(n)≥n及n≤C(n)≤4n,故时间复杂度为Θ(n)这部分书上与ppt上已有证明就不过多论述了对以上随机算法的一种思考改进分析以上算法不难发现,其先随机选择一个位置v,然后根据v进行对元素的舍弃,因此每次舍弃不同个元素的概率是相同的,我就思考可不能够让选中舍弃较多元素的位置的概率更大,让算法有更大几率舍弃掉较多的元素。算法的想法如下:如果随机选择一个位置的元素进行比较,每个位置的可能性是均等的,取到的数值可能最大、最小,也可能中间,如果是最大最小的情况,每次舍弃的数值就只能有一个,只有尽可能的取大小排在中间的数值,才能舍去较大的元素,故我思考,不妨选择随机选择两个位置,v,j令x=(A[v]+A[j])/2,然后经过x进行分组,这样取到数值为中间大小的数比取到最大最小值的可能性更高,舍弃较多数的几率更大。进而进行了优化。理论上,选择的随机位置越多,平均后,舍弃掉较多数的可能越大,可是这就退化近似成取中值进行分治法求第k小元素的方法,丧失了随机算法的优点,将直接随机到最优解和较优解的可能性也降低了,因此我尝试取2个随机位置的方法进行优化。而且当选择两个随机位置时,序列长度小于等于2个时,没有执行随机算法的必要先从一个特例分析其取到各位置的理论概率大小,令n=8,其取到不同位置的概率如下表(为表示清晰,v,j位置为A进行排序后的位置)由表格数据能够发现,此时数组划分数据x可能处于不同的位置的概率分为别为:3/64,7/64,11/64,15/64,13/64,9/64,5/64,1/64显然舍去较多数的几率更高

用随机算法求第k小项 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数8
  • 收藏数0 收藏
  • 顶次数0
  • 上传人梅花书斋
  • 文件大小4.20 MB
  • 时间2020-03-11