特性阻抗之解释与测试 ,与传输线中方波讯号的如何传送,以及如何确保其讯号完整性(SignalIntegrity),降低其噪声(Noise)减少之误动作等专业表达,若能以简单的生活实例加以说明,而非动则搬来一堆数学公式与难懂的物理语言者,则对新手或隔行者之启迪与造福,实有事半功倍举重若轻之受用也。然而,众多本科专业者,甚至杏坛为师的博士教授们,不知是否尚未真正进入情况不知其所以然?亦或是刻意卖弄所知以慑服受教者则不得而知,或是二者心态兼有之!坊间大量书籍期刊文章,多半也都言不及义缺图少例,确实让人雾里看花,看懂了反倒奇怪呢! 笔者近来获得一份有关阻抗控制的简报数据,系电性测试之专业日商HIOKI所提供。其内容堪称文要图简一看就懂,令人爱不释手。正是笔者长久以来所追求的境界,大喜之下乃征得原著“问港建”公司的同意,并经由港建公司廖丰莹副总的大力协助,以及原作者山崎浩(HiroshiYamazaki)及其上司金井敏彦(ToshihikoKanai)等解惑下,得以完成此文,在此一并感谢。并欢迎所有前辈先进们,多多慨赐类似数据嘉惠学子读者,则功在业界善莫大焉。《》(SignalLine)中,当出现方波讯号的传输时,可将之假想成为软管(hose)送水浇花。一端于手握处加压使其射出水柱,另一端接在水龙头。当握管处所施压的力道恰好,而让水柱的射程正确洒落在目标区时,则施与受两者皆欢而顺利完成使命,岂非一种得心应手的小小成就?,不但腾空越过目标浪费水资源,甚至还可能因强力水压无处宣泄,以致往来源反弹造成软管自龙头上的挣脱!不仅任务失败横生挫折,而且还大捅纰漏满脸豆花呢!,当握处之挤压不足以致射程太近者,则照样得不到想要的结果。过犹不及皆非所欲,唯有恰到好处才能正中下怀皆大欢喜。,正可用以说明方波(SquareWave)讯号(Signal)在多层板传输线(TransmissionLine,系由讯号线、介质层、及接地层三者所共同组成)中所进行的快速传送。此时可将传输线(常见者有同轴电缆CoaxialCable,与微带线MicrostripLine或带线StripLine等)看成软管,而握管处所施加的压力,就好比板面上“接受端”(Receiver)组件所并联到Gnd的电阻器一般(是五种终端技术之一,请另见TPCA会刊第13期“内嵌式电阻器之发展”一文之详细说明),可用以调节其终点的特性阻抗(CharacteristicImpedance),使匹配接受端组件内部的需求。《.传输线之终端控管技术(Termination)“讯号”在传输线中飞驰旅行而到达终点,欲进入接受组件(如CPU或Menomery等大小不同的IC)中工作时,则该讯号线本身所具备的“特性阻抗”,必须要与终端组件内部的电子阻抗相互匹配才行,如此才不致任务失败白忙一场。用术语说就是“正确执行指令,减少噪声干扰,避免错误动作”。一旦彼此未能匹配时,则必将会有少许能量回头朝向“发送端”反弹,进而形成反射噪声(Noise)的烦恼。(Z0)被设计者订定为28ohm时,则终端控管的接地的电阻器(Zt)也必须是28ohm,如此才能协助传输线对Z0的保持,使整体得以稳定在28ohm的设计数值。也唯有在此种Z0=Zt的匹配情形下,讯号的传输才会最具效率,其“讯号完整性”(SignalIntegrity,为讯号质量之专用术语)也才最好。《》(CharacteristicImpedance),在传输线组合体的讯号线中,以高准位(HighLevel)的正压讯号向前推进时,则距其最近的参考层(如接地层)中,理论上必有被该电场所感应出来的负压讯号伴随前行(等于正压讯号反向的回归路径ReturnPath),如此将可完成整体性的回路(Loop)系统。该“讯号”前行中若将其飞行时间暂短加以冻结,即可想象其所遭受到来自讯号线、介质层与参考层等所共同呈现的瞬间阻抗值(InstantaniousImpedance),此即所谓的“特性阻抗”。是故该“特性阻抗”应与讯号线之线宽(w)、线厚(t)、介质厚度(h)与介质常数(Dk)都扯上了关系。此种传输线之一的微带线其图示与计算公式如下:【笔者注】Dk(onstant)之正确译词应为介质常数,原文中之...r其实应称做“相对容电率”(RelativePermitivity)才对。后者是从平行金属板电容器的立场看事情。由于其更接近事实,因而近年来许多重要规范(如IPC-6012、IPC-4101、IPC-2141与IEC-326)等都已改称为...r了。
影响特性阻抗的主要因素分析 来自淘豆网m.daumloan.com转载请标明出处.