下载此文档

圆锥曲线切线方程总结附证明.doc


文档分类:中学教育 | 页数:约3页 举报非法文档有奖
1/3
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/3 下载此文档
文档列表 文档介绍
运用联想探究圆锥曲线的切线方程 

现行人教版统编教材高中数学第二册上、第75页例题2,给出了经过圆上一点的切线方程为;当在圆外时,过点引切线有且只有两条,过两切点的弦所在直线方程为。那么,在圆锥曲线中,又将如何?我们不妨进行几个联想.
联想一:(1)过椭圆上一点切线方程为;(2)当在椭圆的外部时,过引切线有两条,过两切点的弦所在直线方程为:
证明:(1)的两边对求导,得,得,由点斜式得切线方程为,即 。
(2)设过椭圆外一点引两条切线,切点分别为、.由(1)可知过、两点的切线方程分别为:、。又因是两条切线的交点,所以有、。观察以上两个等式,发现、满足直线,所以过两切点、两点的直线方程为。
评注:因在椭圆上的位置(在椭圆上或椭圆外)的不同,同一方程表示直线的几何意义亦不同。
联想二:(1)过双曲线上一点
切线方程为;(2)当在双曲线的外部时,过引切线有两条,过两切点的弦所在直线方程为:。(证明同上)
联想三:(1)过圆锥曲线(A,C不全为零)上的点的切线方程为;(2)当在圆锥曲线(A,C不全为零)的外部时,过引切线有两条,过两切点的弦所在直线方程为:
证明:(1)两边对求导,得ﻩ
得,由点斜式得切线方程为
化简得…………………。①
因为…………………………………………………  ②
由①-②×2可求得切线方程为:
(2)同联想一(2)可证。结论亦成立.
根据前面的特点和圆上点的切线方程,得到规律:过曲线上的点的切线方程为:把原方程中的用代换,用代换。若原方程中含有或的一次项,把用代换,用代换,得到的方程即为过该点的切线方程。当点在曲线外部时,过引切线有两条,过两切点的弦所在直线方程为:
通过以上联想可得出以下几个推论

圆锥曲线切线方程总结附证明 来自淘豆网m.daumloan.com转载请标明出处.

非法内容举报中心
文档信息
  • 页数3
  • 收藏数0 收藏
  • 顶次数0
  • 上传人AIOPIO
  • 文件大小238 KB
  • 时间2021-02-06