The document was prepared on January 2, 2021
变压器保护差动保护毕业设计
目录
变压器主保护——差动保护设计
:变压器保护概述
随着电力系统的出现,继电保护技术就相伴而生。与当代新兴科学技术相比,电力系统继电保护是相当古老了,然而电力系统继电保护作为一门综合性科学又总是充满青春活力,处于蓬勃发展中。之所以如此,是因为它特别注重理论与实践并重,与基础理论、新理论、新技术的发展紧密联系在一起,同时也与电力系统的运行和发展息息相关。电力系统自身的发展是促进继电保护发展的内因,是继电保护发展的源泉和动力,而相关新理论、新技术、新材料的发展是促进继电保护发展的外因,是电力系统继电保护发展的客观条件和技术基础。
国内外变压器差动保护研究发展现状
随着超高压、远距离输电在电力系统中的应用越来越广泛,大容量变压器的应用日益增多,对变压器保护的可靠性、快速性提出了更高的要求。电力变压器在空载合闸投入电网或外部故障切除后电压恢复时会产生数值很大的励磁涌流,同时波形严重畸变,容易造成差动保护误动作,直接影响到变压器保护的可靠性。差动保护一直是电力变压器的主保护,其理论根据是基尔霍夫电流定律,对于纯电路设备,差动保护无懈可击。但是对于变压器而言,由于内部磁路的联系,本质上不再满足基尔霍夫电流定律,变压器励磁电流成了差动保护不平衡电流的一种来源。
当前变压器差动保护的主要矛盾仍然集中在励磁涌流和内部故障电流的鉴别上。近十多年来,国内外许多学者致力于变压器继电保护的研究,提出了不少判别励磁涌流的新原理和新方法。
课题内容及意义
根据以上的分析及对目前应解决问题的研究,得到本课题所作研究的目的:运用小波原理,探求新的励磁涌流与内部故障判别方法。其意义在于通过研究新判据,尝试以小波分析方案完善目前的励磁涌流判据,提高差动保护的可靠性。
设计电站的原始资料(地区电网系统接线图)
:变压器的继电保护介绍
变压器原理介绍
变压器主要是用来输变电的,变压器能量传递是通过电磁感应而实现的,所以分析变压器电磁关系要根据有关电和磁的规律。每台变压器必须有电路和磁路,而电路和磁路又是电场和磁场的简化,但是在遇到一些细致的问题时,我们还是必须要用场的方法来解决。一般变压器的电路是由绕组构成,而磁路是指定的磁通所通过的部分。
(1)电路分析:
对于普通电力变压器,就是指那些单相、三相、双绕组和三绕组电力变压器,由于他们绕组的联结方式不同,所以绕组电流,线电流,相电流的计算公式都是不一样的。但都可以用表达式来表示。其中K是比率系数,P是额定容量,是额定电压。而绕组的匝数取决于铁心心柱截面的大小。因为当铁心采用某一牌号硅钢片以后,磁密B基本上是一个变化范围很小的量;而且在某一相电压作用下,绕组每匝电势与该绕组匝数W的乘积也是一个常量,所以铁心柱截面A大时,绕组每匝电势也大,则该绕组匝数减小。既然绕组的匝数完全取决于每匝电势,当f=50Hz时,,根据每匝电势和外加电压我们就可以计算出各绕组的匝数。当发生匝间短路时,绕组匝数将变小,电势E也将变小,而电流分量将增大,引起变压器差动保护动作。
(2)磁路分析
铁心是变压器的磁路,变压器是由电能输入侧,即一次绕组侧励磁的。在一次与二次绕组间建立起交变磁通的电流,称为励磁电流或磁化电流。具有磁性铁心的变压器,交变磁通大部分在铁心中流通,该磁通叫做主磁通。
双绕组变压器负载时的磁式方程为
(2-1)
或 (2-2)
将上式改写为:
(2-3)
式中,—次电流的负载分量。
由上式可以看出,一次电流乃是励磁电流与一次电流负载分量IAHT的矢量和,等于运用一二次匝数比折算的二次电流,并取负号,即
(2-4)
于是,变压器的磁场可以看作两个部分,一是由励磁磁势建立;二是由其和等于零的二次电流和一次电流负载分量的磁势所建立的。这个由合成磁势所建立的磁场,按照全电流定律,不可能包含与变压器的两个绕组都铰链的磁通,仅可能包含与一个绕组逐次或完全铰链的磁通。这个磁场,就叫做变压器的漏磁场。
如果变压器在空载和负载时,一次绕组端所施加的电压是相等的,则变压器的空载电流和负载时的励磁电流二者在大小、相位与波形上相差很小。
由公式
变压器保护差动保护毕业设计 来自淘豆网m.daumloan.com转载请标明出处.