: .
教学设计(教案)模板
基本信息
学 科
数学
年 级
八年级
教学形式
新授
教 师
王伟杰
单 位
新密市实验初级中学
课题名称
二元一次方程组
学情分析
分析要点:、师生访谈、学生作业或试题分析反馈、问卷调查等;:主要分析学生现在的认知基础(包括知识基础和能力基础),要形成本节内容应该要走的认知发展线;:学生形成本节课知识时最主要的障碍点。
方程是刻画现实世界实际意义的重要模型,具有着广泛的应用,在义务教育阶段的数学课程中占有重要地位,在此之前,学生已经学习过一元一次方程,本节是在学生对一元一次方程已有认识的基础上,对二元一次方程组进行讨论。由于前面已学过一元一次方程的内容,学生已经对方程有一定的认识,会用一元一次方程表示问题中的数量关系,会解一元一次方程,从解法上说,多元方程消元后要划归为一元方程,即对一元次方程的认识,为进一步学习二元一次方程组奠定基础,对二元一次方程组的认识为学习三元一次方程组奠定基础。本章的内容是在前面的基础上的进一步发展,即有“一元”向“多元”发展,也是学习后续知识的基础。
教学目标
分析要点:;;。
1. 会用代入消元法解二元一次方程组.
2.了解 “消元”思想,初步体会数学研究中“化未知为已知”的化归思想.
3.让学生经历自主探索过程,化未知为已知,从中获得成功的体验,从而激发学生的学习兴趣.
教学过程
第一环节:情境引入
内容:
教师引导学生共同回忆上一节课讨论的“买门票”问题,想一想当时是怎么获得二元一次方程组的解的.
设他们中有x个成人,y个儿童,我们得到了方程组成人和儿童到底去了多少人呢?在上一节课的“做一做”中,我们通过检验是不是方程x+y=8和方程5x+3y=34的解,从而得知这个解既是x+y=8的解,也是5x+3y=34的解,根据二元一次方程组的解的定义,.
提出问题:每一个二元一次方程的解都有无数多个,而方程组的解是方程组中各个方程的公共解,前面的方法中却好我们找到了这个公共解,但如果数据不巧,这可没那么容易,那么,有什么方法可以获得任意一个二元一次方程组的解呢?
第二环节:探索新知
内容:回顾七年级第一学期学习的一元一次方程,是不是也曾碰到过类似的问题,能否利用一元一次方程求解该问题? (由学生独立思考解决,教师注意指导学生规范表达)
解:设去了x个成人,则去了(8-x)个儿童,根据题意,得:
5x+3(8-x)=34.
解得:x=5.
将x=5代入8-x=8-5=3.
答:去了5个成人, 3个儿童.
在学生解决的基础上,引导学生进行比较:列二元一次方程组和列一元一次方程设未知数有何不同?列出的方程和方程组又有何联系?对你解二元一次方程组有何启示?
(先让学生独立思考,然后在学生充分思考的前提下,进行小组讨论,在此基础上由学生代表回答,老师适时地引导与补充,力求通过学生观察、思考与讨论后能得出以下的一些要点.)
教学设计(教案)王伟杰 来自淘豆网m.daumloan.com转载请标明出处.