: .
小学数学图形与几何
小学数学图形与几何
话题一
吴正宪(北京教育科学研究院)
王彦伟(北京东城区教师研修中心)
张 杰(北京东城区教育研修学院)
2011 版课标终于要公布了,新课标 修订后有哪些变化。这一讲主要讲“图形与几何”这个领域的变化。
新课标在图形与几何领域有几个核心概念。主要有 E4%B9%DB%C4%"空间观念、几何直观、D%C6%C0%ED%C4%DC%C1%"推理能力等 。
空间观念主要是指根据物体特征抽象出几何图形,根据几何图形想象出所描述的实际物体;想象出物体的方位和相互之间的位置关系;描述图形的运动和变化;依据语言的描述画出图形等。
更直观的理解如下图:
几何直观主要是指利用图形的描述和分析问题,借助几何直观可以把复杂的数学问题,变得简明形象,有助于探索解决问题的思路,预测结果,探索思路预测结果。
案例:《打电话》
如果你是老师,有件紧急的事情要通知给同学,用打电话的方式,每分钟通知 1 人,给你 3 分钟的时间,能使多少人收到通知?大胆的猜测一下。
下面是学生借助图形研究的例子。这些学生都能够利用线段、点以图形的形式,来描述打电话来通知这件事情,设计方案。
ages/" \* MERGEFORMAT
通过这个数图就把这个复杂的数量关系,很简明很直观的呈现出来,而且从这个图本身,就能发现一些规律,就是一分钟通知一个人,第二次通知的新的人数,就是第一次的两倍,否则你算是算不出来,看图就看出来了。
通过线段、点,以及图形,把通知过程很简捷的表现出来,把它们之间的关系,揭示得非常清楚,这就属于典型的几何直观,就是图形直观。
推理能力 的发展应贯穿于整个数学学习过程中。推理是数学的基本思维方式,也是人们学习和生活中经常使用的思维方式。推理一般包括合情推理和演绎推理,合情推理是从已有的事实出发,凭借经验和直觉,通过归纳和类比等推断某些结果;演绎推理是从已有的事实(包括定义、公理、定理等)和确定的规则(包括运算的定义、法则、顺序等)出发,按照逻辑推理的法则证明和计算。在解决问题的过程中,两种推理功能不同,相辅相成:合情推理用于探索思路,发现结论;演绎推理用于证明结论。
通过对一线教师的访谈,查阅资料,把老师们的困惑集中起来,归结为四个大话题。
讨论话题:
1.如何在观察、操作中“认识图形” 抽象出图形特征,发展空间观念?
2.如何以“图形的测量”为载体,渗透度量意识,体会测量的意义,认识度量单位及其实际意义,了解掌握测量的基本方法,并在具体问题中进行恰当的估测?从而发展 学生的空间观念与推理能力?
3.如何通过“图形的运动”探索发现,体会研究图形性质的不同方法,发展学生几何直观能力和空间观念,提高学生研究图形性质的兴趣?
4.如何通过学习“确定图形位置”的方法,发展学生的空间观念和推理能力?
话题一、图形的认识——抽象图形特征,发展空间第二
学段
( 1 ) 了解两点确定一条直线和两条相交直线确定一个点。
( 2 ) 能区分直线、线段和射线。
( 3 )体会两点间所有连线中线段最短,知道两点间的距离。
( 4 )知道周角、平角的概念及周角、平角、钝角、直角、锐角之间的大小关系。
( 5 )结合生活情境了解平面上两条直线的平行和相交(包括垂直)关系。
( 6 )通过观察、操作,认识平行四边形、梯形和圆,会用圆规画圆。
( 7 )认识三角形,通过观察、操作,了解三角形两边之和大于第三边、三角形内角和是 180 ° 。
( 8 )认识等腰三角形、等边三角形、直角三角形、锐角三角形、钝角三角形。
( 9 )通过观察、操作,认识长方体、正方体、圆柱和圆锥,认识长方体、正方体和圆柱的 展开图。
( 10 )能辨认 从不同方位看到的物体的形状和相对位置。 [参见例 1 ]
1. 结合实例了解线段、射线和直线。
2.体会两点间所有连线中线段最短,知道两点间的距离。
3.知道平角与周角,了解周角、平角、钝角、直角、锐角之间的大小关系。
4.结合生活情境了解平面上两条直线的平行和相交(包括垂直)关系。
5.通过观察、操作,认识平行四边形、梯形和圆 ,知道扇形, 会用圆规画圆。
6.认识三角形,通过观察、操作,了解三角形两边之和大于第三边、三角形内角和是 180° 。
7.认识等腰三角形、等边三角形、直角三角形、锐角三角形、钝角三角形。
8.能辨认 从不同方向(前面、侧面、上面)看到的物体的形状图 (参见例 32 )。
9
小学数学图形与几何 来自淘豆网m.daumloan.com转载请标明出处.