多元线性回归分析
第一页,共75页
多元线性回归
1 多元线性回归模型
2 回归方程的拟合优度
3 显著性检验
4 多重共线性
5 利用回归方程进行估计和预测
6 变量选择与逐步回归
7 虚拟自变量的回归
8 非线性回归
第二页,共75页
学习目标
1. 回归模型、回归方程、估计的回归方程
2. 回归方程的拟合优度
回归方程的显著性检验
多重共线性问题及其处理
利用回归方程进行估计和预测
虚拟自变量的回归问题
非线性回归
第三页,共75页
1 多元线性回归模型
多元回归模型与回归方程
估计的多元回归方程
参数的最小二乘估计
第四页,共75页
多元回归模型与回归方程
第五页,共75页
多元回归模型 (multiple regression model)
一个因变量与两个及两个以上自变量的回归
描述因变量 y 如何依赖于自变量 x1 , x2 ,…, xk 和误差项 的方程,称为多元回归模型
涉及 k 个自变量的多元回归模型可表示为
b0 ,b1,b2 ,,bk是参数
是被称为误差项的随机变量
y 是x1,,x2 , ,xk 的线性函数加上误差项
包含在y里面但不能被k个自变量的线性关系 所解释的变异性
第六页,共75页
多元回归模型(基本假定)
误差项ε是一个期望值为0的随机变量,即E()=0
对于自变量x1,x2,…,xk的所有值,的方差 2都相同
误差项ε是一个服从正态分布的随机变量,即ε~N(0,2),且相互独立
第七页,共75页
多元回归方程 (multiple regression equation)
描述因变量 y 的平均值或期望值如何依赖于自变量 x1, x2 ,…,xk的方程
多元线性回归方程的形式为
E( y ) = 0+ 1 x1 + 2 x2 +…+ k xk
b1,b2,,bk称为偏回归系数
bi 表示假定其他变量不变,当 xi 每变动一个单位时,y 的平均变动值
第八页,共75页
二元回归方程的直观解释
二元线性回归模型
(观察到的y)
回归面
0
i
x1
y
x2
(x1,x2)
}
第九页,共75页
估计的多元回归方程
第十页,共75页
多元线性回归分析 来自淘豆网m.daumloan.com转载请标明出处.