下载此文档

中考数学解题技巧.doc


文档分类:中学教育 | 页数:约8页 举报非法文档有奖
1/8
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/8 下载此文档
文档列表 文档介绍
中考数学解题技巧.doc中考数学解题技巧
1、 配方法所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某 些项配成一个或几个多项式正整数次摹的和形式。通过配方解决数学问题的方法 叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒 等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明 等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、 因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式。因 式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、 几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上 介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项 添项、求根分解、换元、待定系数等等。
3、 换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。我 们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中, 用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解 决。
4、 待定系数法在解数学问题时,若先判断所求的结果具有某种确定的形式, 其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解 出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这 种解题方法称为待定系数法。它是中学数学中常用的方法之一
5、 判别式法与韦达定理一元二次方程ax2+bx+c=0 (a、b、c属于R, azO) 根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数 式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛 的应用。韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和 与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符 号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
6、 构造法在解题时,我们常常会采用这样的方法,通过对条件和结论的分 析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、
一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种 解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何 等各种数学知识互相渗透,有利于问题的解决。
7、 反证法反证法是一种间接证法,它是先提出一个与命题的结论相反的假 设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设, 达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有 一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体 上分为:(1)反设;(2)归谬;(3)结论。反设是反证法的基础,为了正确地作出反 设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不 存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于; 都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n — 1)个;至多有 一个/至少有两个;唯一/至少有两个。归谬是反证法的关键,导出矛盾的过程没 有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理 必须严谨。导出的矛盾有如下几种类型:与已知条件矛

中考数学解题技巧 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数8
  • 收藏数0 收藏
  • 顶次数0
  • 上传人蓝天
  • 文件大小93 KB
  • 时间2021-12-06