下载此文档

高中圆的基本性质与点圆关系 知识点及试题答案.doc


文档分类:中学教育 | 页数:约6页 举报非法文档有奖
1/6
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/6 下载此文档
文档列表 文档介绍
. .
. v )①x2和y2的系数一样,不等于0。
②没有xy这样的二次项。
(2)圆的一般方程中有三个特定的系数D、E、F,只要求出这三个系数,圆的方程就确定了。
(3)与圆的标准方程相比较,代数特征明显,而圆的标准方程几何特征较明显。

如果是圆,一定有〔1〕A=C0;〔2〕B=0;〔3〕D2+E2-4AF>0。反之,也成立。
例1:,请求出圆的圆心及半径。
. .
. v .
例2:方程x2+y2+4mx-2y+5m=0表示圆时, m的取值围是〔 D 〕
A. B. C. D. 或
例3:如果圆的方程为x2+y2+kx+2y+k2=0,那么当圆面积最大时圆心坐标为〔 〕
A.〔-1,1〕 B.〔1,-1〕 C.〔-1,0〕 D.〔0,-1〕
例4:圆的圆心坐标为,半径为.
例5:方程x2+y2-2(m+3)x+2(1-4m2)y+16m4+9=0表示一个圆。
1:数m的围。
2:求该圆半径r的围。
3:求圆心C的轨迹的普通方程。
解:(1)方程表示圆的充要条件是,即:
4(m+3)2+4(1-4m2)2-4(16m4+9)>0,
解之得-<m<1.
(2),得到r的取值围
(3)设圆心为(x,y),
那么
消去m得:y=4(x-3)2-1,
∵-<m<1,
∴<x<4,
即轨迹为:y=4(x-3)2-1(<x<4)。
. .
. v .
例6:实数满足等式,求的最值。
第二节 点与圆的关系

〔1〕>,点在圆外
〔2〕=,点在圆上
〔3〕<,点在圆
例1:的三个顶点的坐标是求它的外接圆的方程。
解析:用待定系数法确定三个参数。
例2:圆经过点和,且圆心在上,求圆的标准方程。
解析:圆心为的圆经过点和,由于圆心与A,B两点的距离相等,所以圆心在AB的垂直平分线m上,又圆心在直线上,因此圆心是直线与直线m的交点,半径长等于或。
例3:写出圆心为半径长等于5的圆的方程,并判断点是否在这个圆上。
:圆的对称性问题可以转化为原点的对称性,而圆的半径r相等。
例1:求x2+y2+4x-12y+39=0关于直线3x-4y-5=0的对称圆方程
解析:圆方程可以转化为(x+2)2+(y-6)2=1,圆心O(-2,

高中圆的基本性质与点圆关系 知识点及试题答案 来自淘豆网m.daumloan.com转载请标明出处.