如何在保险业中主动反欺诈?
2011-07-25 16:37:15 来源: 福布斯中文网(上海) 有0人参与 手机看新闻
转发到微博(0)
在保险行业,“欺诈”是一个令人恨之入骨,却又常常无可奈何的现象。据美国反欺诈联盟的估算,20
传统上大多数有欺诈可能性案件的发现是经过了整个业务流程,从报案、查勘、定损、谈判、核赔到追偿残值,很多时候是整个流程都快走完了才发现需要去做调查。这就导致就算欺诈被发现也是事后的,而且是在赔款支付以后,这就意味着要付出额外的成本去追回欺诈款。如果能够采取主动的反欺诈调查,就是在成千上万的理赔案件里面,通过一些模式分析首先发现存在高风险的欺诈案件,在这些案件进入平常的处理流程之前,将它们引入特别的处理程序,提前启动调查流程,这样就可以在相当程度上降低保险公司的成本,而且因为避免了事后追偿或者当时质疑,客户满意度也会提升。
国内一家领先的保险公司就正在进行这样的实践,将反欺诈的调查手段尽量提前。
该公司把反欺诈的过程分成发现、处理到防止三个环节。在发现环节要有手段,针对每一个特定类型的风险都要进行甄别,并且对风险因子进行量化;处理环节要根据发现的风险采取多方的处理措施,不同类型的风险要用不同类型的措施去应对,减少由于欺诈所产生的支出;防止环节要了解跨整个企业环节的风险而不是某个业务环节的风险,采取主动的、预测性的风险管理手段,持续监控和了解逐渐凸现的可能风险。
该解决方案的特点是通过技术手段对海量的非正常客户理赔数据进行分析, 充分利用行为建模(behavior modeling)的方法来甄别潜在的渗漏和欺诈,即:通过一些专有的数据分析和数据模型手段去帮保险公司厘定一些标准。
什么样的行为是具有高风险的行为模式?这些行为模式是用什么样的数据维度来衡量和发现的?哪些人群最有可能采取这样的行为?为了找到目标人群,需要用什么样的数据去捕获?在获得行为模式识别和可能客户对象识别的结果后,来分析和预测到底哪些案件应该控制风险,哪些案件应该降低成本支出,把有限的保险公司的理赔资源投入和精力放到最有可能发生欺诈和渗漏的案件上去。
解决方案分三个阶段来实现:
理赔档案分析:通过对已经发生的典型欺诈案件做分析,找出欺诈的来源和根本原因。这是一个定性分析阶段,基于保险公司的核心业务系统 理赔档案的管理系统中掌握的大量理赔档案中现有的数据,进行总体的分析和评估,总结出来一些标准和规则,并分析出保险公司核心业务系统中能够掌握的哪些数据和维度和分析得出的欺诈来源和根本原因对应,从大的方面去优化理赔操作,为下一步的建模提供一些基础的数据。这里涉及的设计问卷、案卷调查、案卷审计、改进报告等,都要通过访谈和结构化的分析总结出欺诈的来源和根本的原因。其中还要用到一些严格的统计分层抽样的方法,保证这样的定性分析有一定代表性。
行为建模:从理赔档案分析出的类型和数据维度基础上,利用行为建模的方法发现欺诈的规则和模型,随后进行批量的数据预测,并对结果进行分析。这是一个半自动化的阶段,既有手工工作,也利用一些数据分析和数据挖掘的工具,比如IBM业界领先的SPSS统计分析软件等对所有的资料进行定量、定性分析,确定哪些资料对于判定欺诈风险有作用。
持续优化和改进:把发现的规则和模型引入到理赔系统和业务流程中,进行自动化的持续优化和改进。这是一个自
保险业反欺诈. 来自淘豆网m.daumloan.com转载请标明出处.