《吉米多维奇数学分析习题集》1925题
=arctg ?sinπ?cosπ?ln(x2?2x cosπ+1)+C
解:∵ x2n+1=x2n?ei(2N+1)π=x2n?(eiπ)2n,则x2n+1必有因式x?eiπ,N为任意整《吉米多维奇数学分析习题集》1925题
=arctg ?sinπ?cosπ?ln(x2?2x cosπ+1)+C
解:∵ x2n+1=x2n?ei(2N+1)π=x2n?(eiπ)2n,则x2n+1必有因式x?eiπ,N为任意整数.
∴ x2n+1的因式集为{x?eiπ|k=1,2,…,2n.},取a=eiπ,
x2n+1=(x?eiπ)=(x?a2k?1)=(x?a1)(x?a3)…(x?a2k?1)…(x?a4n?1).
则 x2n+1可表述为:x2n+1=(x?a2k1?1)(x?a2k2?1)…(x?a2kl?1)…(x?a2k2n?1),(2k?1)=(2kl?1).
∴ x2n+1的x2n?l项系数为:(?a2k1?1)(?a2k2?1)…(?a2kl?1)
=(?1)l?a2k1?1?a2k2?1?…?a2k2n?1=(?1)l? a2kj?1=0.
x2n+1的常数项为:(?eiπ)=(?a2kl?1)=a2k?1=a2k?1?a?(2k?1)=1=1.
∴ = = ?(x?a1)(x?a3)…(x?a2k?1)…(x?a4n?1)
=(x?a2k1?1)(x?a2k2?1)…(0?a2kl?1)…(x?a2k2n?1)=??l.
??l=(x?a2k1?1)(x?a2k2?1)…(0?a2kl?1),
∴ ??l的x2n?l项系数为:(?a2k1?1)(?a2k2?1)…(?a2kl?1) =0.
??l的常数项为:(?eiπ)=1.
∴ =??l=1=.
则 = =(+)=.
∴ =
=arctg ?sinπ?cosπ?ln(x2?2x cosπ+1)+C.
吉米多维奇数学分析习题集1925题 来自淘豆网m.daumloan.com转载请标明出处.