课题 (二)
教学目的:
(1)探究相似图形的性质,知道相似图形的对应角相等,对应边的比相等.
(2)探究相似图形的断定,知道“假设两个多边形满足对应角相等,对应边的比相等.那么这两个多边形相似”
课题 (二)
教学目的:
(1)探究相似图形的性质,知道相似图形的对应角相等,对应边的比相等.
(2)探究相似图形的断定,知道“假设两个多边形满足对应角相等,对应边的比相等.那么这两个多边形相似”
(3)在探究相似图形的性质的探究过程中,让学生运用观察-猜测—考虑-验证的数学思想,并体会由特殊到一般的思想方法.能运用相似图形的性质解决问题.
(4)在探究相似图形的性质过程中,培养学生和别人交流、合作的意识和品质.
重点、难点
教学重点: 知道相似图形的对应角相等,对应边的比相等.
教学难点: 能运用相似图形的性质解决问题.
活动1观察图片,体会相似图形性质(教材P36页)
(1) 图27。1—4(1)中的△A1B1C1是由正△ABC放大后得到的,观察这两个图形,它们的对应角有什么关系?对应边又有什么关系呢?
—4
(2)-4(2)中两个相似的正六边形,是否也能得到类似的结论?(3)
什么叫成比例线段?(阅读课本答复)
老师活动:老师出示图片,提出问题;
学生活动:学生细心观察考虑,小组讨论后答复问题:
它们的对应角相等,对应边的比相等.
.
老师活动:在活动中,老师应重点关注:
(1) 学生参和活动的热情及语言归纳数学结论的才能;
(2) 学生对正三角形和正六边形的图形性质的认识是否到位;
(3) 对成比例线段的理解和掌握.
活动2 探究(教材P37页):
-5(1)中是两个相似三角形, 它们的对应角有什么关系?对应边的比是否相等?
—5(2)中两个相似四边形,它们的对应角、对应边是否也有同样的结论?
(1) (2)
—5
老师活动:老师出示图片,提出问题;为了验证学生自己的猜测,可以鼓励学生用刻度尺和量角器量一量.
学生活动:学生猜测,小组讨论后答复问题:
学生归纳总结:相似多边形的对应角相等,对应边的比相等;
(1)假设两个多边形的对应角相等,对应边的比相等,那么这两个多边形相似
;
(2)相似多边形的对应
271图形的相似(二) 来自淘豆网m.daumloan.com转载请标明出处.