下载此文档

微积分应用论文.doc


文档分类:高等教育 | 页数:约10页 举报非法文档有奖
1/10
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/10 下载此文档
文档列表 文档介绍
精品范文模板 可修改删除
免责声明:图文来源于网络搜集,版权归原作者所以
若侵犯了您的合法权益,请作者与本上传人联系,我们将及时更正删除。
撰写人:___________日 期:___________
一周而成的旋转体的体积为
椭圆绕y轴旋转时,旋转体可以看作是右半椭圆,与y轴所围成的图形绕y轴旋转一周而成的,因此椭圆
精品范文模板 可修改删除

免责声明:图文来源于网络搜集,版权归原作者所以
若侵犯了您的合法权益,请作者与本上传人联系,我们将及时更正删除。
所围成的图形绕y轴旋转一周而成的旋转体的体积为

(3)求平面曲线的弧长
(I)、设曲线弧由参数方程
给出其中在上连续,则该曲线弧的长度为。
(Ⅲ)设曲线弧的极坐标方程为,其中在上连续,则该曲线弧的长度为。
例如:求曲线从x=l到x=e之间一段曲线的弧长。
解:,于是弧长微元为,。
所以,所求弧长为:。
一、在几何中的应用
(一)微分学在几何中的应用
(1)求曲线切线的斜率
由导数的几何意义可知,曲线y=( x)在点处的切线等于过该点切线的斜率。即,由此可以求出曲线的切线方程和法线方程。
例如:求曲线在点(1,1)处的切线方程和法线方程。
分析:由导数的几何意义知,所求切线的斜率为:
精品范文模板 可修改删除

免责声明:图文来源于网络搜集,版权归原作者所以
若侵犯了您的合法权益,请作者与本上传人联系,我们将及时更正删除。
,所以,所求切线的方程为y-l=2(x一1),化解得切线方程为2x-y-1=0。又因为法线的斜率为切线斜率的负倒数,所以,所求法线方程为,化解得法线方程为2y+x-3=0。
(2)求函数值增量的近似值
由微分的定义可知,函数的微分是函数值增量的近似值,所以通过求函数的微分可求出函数值增量的近似值。
例如:计算的近似值。
分析:令f(x)=sin(x),则f(x)=cosx,取,,则由微机分的定义可知

在我所查找到的关于微积分在经济学领域的应用中,我发现高等数学在经济学中运用十分基础和广泛,是学好经济学 剖析现实经济现象的基本工具。经济学与数学是密不可分息息相关的。高等数学方法在经济学中的运用增强了经济学的严密性和说理性,将经济问题转化为数学问题,用数学方法对经济学问题进行分析,将数学中的极限,导数、微分方程知识在经济中的运用。
尤其我看到在经济管理中,由边际函数求总函数(即原函数),一般采用不定积分来解决,或求一个变上限的定积分;如果求总函数在某个范围的改变量,则采用定积分来解决。这个对一个企业的发展至关重要!
1关于最值问题

 设:生产x个产品的边际成本C=100+2x,其固定成本为C(0)=1000元,产品单价规定为500元。假设生产出的产品能完全销售,问生产量为多少时利润最大?并求最大利润
解:总成本函数为
C(x)=∫x0(100+2t)dt+C(0)=100x+x 2+1000
总收益函数为R(x)=500x
总利润L(x)=R(x)-C(x)=400x-x2-1000,L’=400-2x,令L’=0,得x=200,因为L’’

微积分应用论文 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数10
  • 收藏数0 收藏
  • 顶次数0
  • 上传人无需盛会
  • 文件大小176 KB
  • 时间2022-05-08