The document was finally revised on 2021
浙江绍兴中考数学试题及答案
2014年浙江省绍兴市中考数学试卷
一、选择题(本大题共10小题,每小题4分,共40分)
1.码后,天平仍呈平衡状态,如图2,则被移动的玻璃球的质量为( )
A. 10克 B. 15克 C. 20克 D. 25克
考点: 一元一次方程的应用.
分析: 根据天平仍然处于平衡状态列出一元一次方程求解即可.
解答: 解:设左、右侧秤盘中一袋玻璃球的质量分别为m克、n克,
根据题意得:m=n+40;
设被移动的玻璃球的质量为x克,
根据题意得:m﹣x=n+x+20,
x=(m﹣n﹣20)=(n+40﹣n﹣20)=10.
故选A.
点评: 本题考查了一元一次方程的应用,解题的关键是找到等量关系.
9.(4分)(2014年浙江绍兴)将一张正方形纸片,按如图步骤①,②,沿虚线对着两次,然后沿③中的虚线剪去一个角,展开铺平后的图形是( )
A. B. C. D.
考点: 剪纸问题.
分析: 按照题意要求,动手操作一下,可得到正确的答案.
解答: 解:由题意要求知,展开铺平后的图形是B.
故选B.
点评: 此题主要考查了剪纸问题,此类问题应亲自动手折一折,剪一剪看看,可以培养空间想象能力.
10.(4分)(2014年浙江绍兴)如图,汽车在东西向的公路l上行驶,途中A,B,C,D四个十字路口都有红绿灯.AB之间的距离为800米,BC为1000米,CD为1400米,且l上各路口的红绿灯设置为:同时亮红灯或同时亮绿灯,每次红(绿)灯亮的时间相同,红灯亮的时间与绿灯亮的时间也相同.若绿灯刚亮时,甲汽车从A路口以每小时30千米的速度沿l向东行驶,同时乙汽车从D路口以相同的速度沿l向西行驶,这两辆汽车通过四个路口时都没有遇到红灯,则每次绿灯亮的时间可能设置为( )
A. 50秒 B. 45秒 C. 40秒 D. 35秒
考点: 推理与论证.
分析: 首先求出汽车行驶各段所用的时间,进而根据红绿灯的设置,分析每次绿灯亮的时间,得出符合题意答案.
解答: 解:∵甲汽车从A路口以每小时30千米的速度沿l向东行驶,同时乙汽车从D路口以相同的速度沿l向西行驶,
∴两车的速度为:=(m/s),
∵AB之间的距离为800米,BC为1000米,CD为1400米,
∴分别通过AB,BC,CD所用的时间为:=96(s),=120(s),=168(s),
∵这两辆汽车通过四个路口时都没有遇到红灯,
∴当每次绿灯亮的时间为50s时,∵=1,∴甲车到达B路口时遇到红灯,故A选项错误;
∴当每次绿灯亮的时间为45s时,∵=3,∴乙车到达C路口时遇到红灯,故B选项错误;
∴当每次绿灯亮的时间为40s时,∵=5,∴甲车到达C路口时遇到红灯,故C选项错误;
∴当每次绿灯亮的时间为35s时,∵=2,=6,=10,=4,=8,
∴这两辆汽车通过四个路口时都没有遇到红灯,故D选项正确;
则每次绿灯亮的时间可能设置为:35秒.
故选:D.
点评: 此题主要考查了推理与论证,根据题意得出汽车行驶每段所用的时间,进而得出由选项分析得出是解题关键.
二、填空题(本大题共6个小题,每小题5分,共30分)
11.(5分)(2014年浙江绍兴)分解因式:a2﹣a= a(a﹣1) .
考点: 因式分解-提公因式法.
分析: 这个多项式含有公因式a,分解因式时应先提取公因式.
解答: 解:a2﹣a=a(a﹣1).
点评: 本题考查了提公因式法分解因式,比较简单,注意不要漏项.
12.(5分)(2014年浙江绍兴)把球放在长方体纸盒内,球的一部分露出盒外,其主视图如图.⊙O与矩形ABCD的边BC,AD分别相切和相交(E,F是交点),已知EF=CD=8,则⊙O的半径为 5 .
考点: 垂径定理的应用;勾股定理;切线的性质.
分析: 首先由题意,⊙O与BC相切,记切点为G,作直线OG,分别交AD、劣弧于点H、I,再连接OF,易求得FH的长,然后设求半径为r,则OH=16﹣r,然后在Rt△OFH中,r2﹣(16﹣r)2=82,解此方程即可求得答案.
解答: 解:由题意,⊙O与BC相切,记切点为G,作直线OG,分别交AD、劣弧于点H、I,再连接OF,
在矩形ABCD中,AD∥BC,而IG⊥BC,
∴IG⊥AD,
∴在⊙O中,FH=EF=4,
设求半径为r,则OH=8﹣r,
在Rt△OFH中,r2﹣(8﹣r)2=42,
解得r=5,
故答案为:5.
点评: 此题考查了切线的性质、垂径定理以及
浙江绍兴中考数学试题及答案 来自淘豆网m.daumloan.com转载请标明出处.