高三数学期中知识点
考点一:向量的概念、向量的根本定理
【内容解读】了解向量的实际背景,把握向量、零向量、平行向量、共线向量、单位向量、相等向量等概念,理解向量的几何表示,把握平面对量的根本定理。
留意合的问题为主,要留意自变量的取值范围。
【命题规律】命题多以解答题为主,属中档题。
考点六:平面对量在平面几何中的应用
【内容解读】,使向量之间的运算代数化,这样就可以将“形”和“数”,很多平面几何问题中较难解决的问题,,给予几何图形有关点与平面对量详细的坐标,这样将有关平面几何问题转化为相应的代数运算和向量运算,从而使问题得到解决.
【命题规律】命题多以解答题为主,属中等偏难的试题。
高三数学必修一学问点
(1)若f(x)是偶函数,那么f(x)=f(-x);
(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);
(3)推断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);
(4)若所给函数的解析式较为简单,应先化简,再推断其奇偶性;
(5)奇函数在对称的单调区间内有一样的单调性;偶函数在对称的单调区间内有相反的单调性;
(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);讨论函数的问题肯定要留意定义域优先的原则。
(2)复合函数的单调性由“同增异减”判定;
(或方程曲线的对称性)
(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;
(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;
(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;
(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;
(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;
(1)y=f(
高三数学期中知识点 来自淘豆网m.daumloan.com转载请标明出处.