下载此文档

正弦定理概念教学设计.docx


文档分类:高等教育 | 页数:约7页 举报非法文档有奖
1/7
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/7 下载此文档
文档列表 文档介绍
正弦定理概念教学设计
【--申请书】
正弦定理是三角学中的一个基本定理,它指出“在任意一个平面三角形中,各边和它所对角的正弦值的比相等且等于外接圆的直径”。小编与大家分享正弦定理的教学设计,欢迎参考!
一、教学内容分析
本节内容安排、分析问题、解决问题的能力,增强学生的协作能力和交流能力,发展学生的创新意识,培养创造性思维的能力。
3.通过学生自主探索、合作交流,亲身体验数学规律的发现,培养学生勇于探索、善于发现、不畏艰辛的创新品质,增强学习的成功心理,激发学习数学的兴趣。
4.培养学生合情合理探索数学规律的数学思想方法,通过平面几何、三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。
五、
教学重点与难点
教学重点:正弦定理的发现与证明;正弦定理的简单应用。
教学难点:正弦定理的猜想提出过程。
六教学过程
1、
设置情境
利用投影展示:一条河的两岸平行,河宽d=1km,因上游突发洪水,在洪峰到来之前,急需将码头A处囤积的重要物资及人员用船转运到正对岸的码头B处或其下游1 km的码头C处。已知船在静水中的速度∣vl∣= 5 km∕h,水流速度∣v2∣=3 km∕h。
2、
提出问题
师:为了确定转运方案,请同学们设身处地地考虑一下有关的问题,将各自的问题经小组(前后4人为一小组)汇总整理后交给我。
待各小组将题纸交给老师后,老师筛选几张有代表性的题纸通过投影向全班展示,经大家归纳整理后得到如下的5个问题:
(l)船应开往B处还是C处?
(2)船从A开到B、C分别需要多少时间?
(3)船从A到B、C的距离分别是多少?
(4)船从A到B、C时的速度大小分别是多少?
(5)船应向什么方向开,才能保证沿直线到达B、C?
师:大家讨论一下,应该怎样解决上述问题?
大家经过讨论达成如下共识:要回答问题(l),需要解决问题(2),要解决问题(2),需要先解决问题(3)和(4),问题(3)用直角三角形知识可解,所以重点是解决问题(4),问题(4)与问题(5)是两个相关问题,因此,解决上述问题的关键是解决问题(4)和(5)。
师:请同学们根据平行四边形法则,先在练习本上做出与问题对应的示意图,明确已知什么,要求什么,怎样求解。
生:船从A开往B的情况如图2,根据平行四边形的性质及解直角三角形的知识,可求得船在河水中的速度大小∣v∣及vl与v2的夹角θ:
生:船从A开往C的情况如图3,∣AD∣=∣v1∣= 5,∣DE∣=∣AF∣=∣v2∣=3,易求得∠AED =∠EAF = 450,还需求θ及v。我不知道怎样解这两个问题,因为以前从未解过类似的问题。
师:请大家想一下,这两个问题的数学实质是什么?
部分学生:在三角形中,已知两边和其中一边的对角,求另一边的对角和第三边。
师:请大家讨论一下,如何解决这两个问题?
生:在已知条件下,若能知道三角形中两条边与其对角这4个元素之间的数量关系,则可以解决上述问题,求出另一边的对角。
生:如果另一边的对角已经求出,那么第三个角也能够求出。只要能知道三角形中两条边与其对角这4个元素的数量关系,则第三边也可求出。
生:在已知条件下,如果能知道三角形中三条边和一个角这4个元素之间的数量关系,也能求出第三边和另一边的对角。
师:同学们的

正弦定理概念教学设计 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数7
  • 收藏数0 收藏
  • 顶次数0
  • 上传人779277932
  • 文件大小42 KB
  • 时间2022-07-22
最近更新