下载此文档

兰彻斯特模型.docx


文档分类:IT计算机 | 页数:约9页 举报非法文档有奖
1/9
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/9 下载此文档
文档列表 文档介绍
§ 兰彻斯特作战模型
[学习目的]
能建立兰彻思特作战模型问题的数学模型;
会求解兰彻思特作战模型问题的数学模型;
能用兰彻思特作战模型问题的数学模型解决一些实际问题。
问题: 两军对垒,现甲军有 m 个士兵,乙军有 n 00
(9)式在x-y平面上定义了一族抛物线,:y(t) *
1 b
如果M > 0,则正规部队胜,因为当y(t)减小到£ M c, 部队x已经被消灭。同样,如M〈 0,则游击队胜。
三、 游击战模型:
若甲乙双方都是游击部队,则双方都隐蔽在对方不易 发现的区域内活动。由混合战部分的分析,得游击战数学 模型
dx
= -cxy + f (t) dt dy
=-dxy + g (t) I dt
其中f(t)和g(t)分别是甲军和乙军的增援率,常数c是乙军的战斗有效系数,常数d是 甲军的战斗有效系数。
如果甲乙双方增援率均为零,则游击战数学模型为
dx
~r = -cxy
dt
< ~~ = -dxy (11)
dt
x(0) = x , y (0) = y
00
(11)的解为 cy - dx = cy - dx = m (12)
00
y(t
)
(12)式在x-y平面上定义了一族直线。如图 :如果m > 0,则乙方胜;如果m < 0,则甲方胜;如m = 0则双方战平。
几点说明:
(1)在模型(3)中,如果a、b、f(t)和 g(t)已知,贝y可用显式求解。但在 模型(7)中,因方程组是非线的,求 解困难,可利用计算机求解。
图 线性解
(2)事前确定战斗有效系数a、b、c和d的数值通常是不可能的,但是如果对已有 的战役资料来确定a和b (或者c和d)的适当系数值,那么对于其他类似于同样条件下进 行的战斗,a和b (或c和d)这些系数就可以认为是已知的了。
因此,在以上意义下,兰彻斯特作战模型仍然具有普遍意义。J・H・ Enge l将第二次 世界大战时美国和日本为争夺硫磺岛所进行的战斗资料进行分析,发现与兰彻斯特作战数 学模型非常吻合,这就说明了兰彻斯特作战数学模型是能够用来描述实际战争的。
下面介绍二战时期著名的硫磺岛战役:
四、硫磺岛战役
硫磺岛位于东京以南1062km,,是日军的重要军事基地。美军想 要夺取硫磺岛作为轰炸日本本土时的轰炸机基地,而日本需要硫磺岛作为战斗机基地,以 便攻击美国的轰炸机。美军从1945年2月19日开始进攻,激烈的战斗持续了一个多月, 双方伤亡十分惨重,日方守军21500人全部阵亡或被俘,美军投入兵力73000人,伤亡 20265人,战争进行到28天时美军宣布占领该岛,实际战斗到36天才停止。美军有按天 统计的战斗减员和增援情况的战地记录,日军没有后援,战地记录全部遗失。
用x(t)和y(t)表示美军和日军在第七天的人数,在正规战模型(1)中加上初始条件,
dx dt dy dt
=-ay + f (t)
=-bx
(13)
x(0) = 0, y (0) = 21,500
54000 ,0 < t < 1
(14)
6000 ,2 < t < 3
13000 ,5 < t < 6
0, 其它
由增援率和每天的伤亡人数可算出x(

兰彻斯特模型 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数9
  • 收藏数0 收藏
  • 顶次数0
  • 上传人zhuwo11
  • 文件大小78 KB
  • 时间2022-07-26