下载此文档

2023年浙江省绍兴义乌市中考数学试卷(word版).doc


文档分类:中学教育 | 页数:约16页 举报非法文档有奖
1/16
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/16 下载此文档
文档列表 文档介绍
该【2023年浙江省绍兴义乌市中考数学试卷(word版) 】是由【lu2yuwb】上传分享,文档一共【16】页,该文档可以免费在线阅读,需要了解更多关于【2023年浙江省绍兴义乌市中考数学试卷(word版) 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。浙江省绍兴市2023年中考数学试卷
一、选择题
1.(2023·绍兴)如果向东走2m记为+2m,那么向西走3米可记为〔〕
A. +3m                                    B. +2m                                    C. -3m           D. -2m
【答案】C
【考点】正数和负数的认识及应用
【解析】【解答】解:如果向东走2m记为+2m,那么向西走3米可记为-3m;故答案为:C。【分析】根据正数与负数可以表示具有相反意义的量,即可得出答案。
2.(2023·绍兴)绿水青山就是金山银山,为了创造良好的生态生活环境,浙江省2023年清理河湖库塘淤泥约为116000000方,数字116000000用科学记数法可以表示为〔〕
A. ×109                         B. ×108                         C. ×107                         D. ×109
【答案】B
【考点】科学记数法—表示绝对值较大的数
【解析】【解答】解:116000000=×108故答案为:B【分析】用科学计数法表示绝对值较大的数,一般表示成a×10n的形式,其中1≤|a|<10,n等于原数的整数位数减一。
3.(2023·绍兴)有6个相同的立方体搭成的几何体如下图,那么它的主视图是〔〕
A. B. C. D. 
【答案】D
【考点】简单组合体的三视图
【解析】【解答】解:观察图形可知其主视图是故答案为:D【分析】简单几何体的组合体的主视图,就是从前向后看得到的正投影,通过观察即可得出答案。
4.(2023·绍兴)抛掷一枚质地均匀的立方体骰子一次,骰子的六个面上分别标有数字1,2,3,4,5,6,那么朝上一面的数字为2的概率是〔〕
A. B. C. D. 
【答案】A
【考点】概率公式
【解析】【解答】解:抛掷一枚质地均匀的立方体骰子一次,那么朝上一面的数字共出现六种等可能情况,其中朝上一面的数字为2的只有一种情况,那么朝上一面的数字为2的概率是故答案为:A,【分析】抛掷一枚质地均匀的立方体骰子一次,那么朝上一面的数字可以是1,2,3,4,5,6六种情况,其中朝上一面的数字为2的只有一种情况,根据概率公式计算即可。
5.(2023·绍兴)下面是一位同学做的四道题①〔a+b〕2=a2+b2,②〔2a2〕2=-4a4,③a5÷a3=a2,④a3·a4=a12。其中做对的一道题的序号是〔〕
A. ①                                         B. ②                                         C. ③                       D. ④
【答案】C
【考点】同底数幂的乘法,同底数幂的除法,完全平方公式及运用,积的乘方
【解析】【解答】解:①〔a+b〕2=a2+2ab+b2,故①错误;②〔2a2〕2=4a4,故②错误;③a5÷a3=a2;故③正确;④a3·a4=a7故④错误。故答案为:C【分析】根据同底数的幂相除,底数不变,指数相减;根据同底数的幂相乘,底数不变,指数相加;积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘;完全平方公式的展开式是一个三项式,首平方,尾平方,积的2倍放中央;利用法那么,一一判断即可。
6.(2023·绍兴)如图,一个函数的图像由射线BA,线段BC,射线CD,其中点A〔-1,
2〕,B〔1,3〕,C〔2,1〕,D〔6,5〕,那么此函数〔〕
A. 当x<1,y随x的增大而增大B. 当x<1,y随x的增大而减小C. 当x>1,y随x的增大而增大D. 当x>1,y随x的增大而减小
【答案】A
【考点】函数的图象,分段函数
【解析】【解答】解:观察图像可知:图像分为三段,从四个答案来看,界点都是1,从题干来看,就是看B点的左边与右边的图像问题,B点左边图像从左至右上升,y随x的增大而增大,即当x<1,y随x的增大而增大;B点右边图像一段从左至右上升,y随x的增大而增大,一段图像从左至右下降y随x的增大而减小;即当2>x>1时,y随x的增大而减小;x>2时y随x的增大而增大;比拟即可得出答案为:A。【分析】这是一道分段函数的问题,从四个答案来看,界点都是1,从题干来看,就是看B点的左边与右边的图像问题,B点左边图像从左至右上升,y随x的增大而增大,B点右边图像一段从左至右上升,y随x的增大而增大,一段图像从左至右下降y随x的增大而减小。
7.(2023·绍兴)学校门口的栏杆如下图,栏杆从水平位置BD绕O点旋转到AC位置,AB⊥BD,CD⊥BD,垂足分别为B,D,AO=4,AB=,CO=1m,那么栏杆C端应下降的垂直距离CD为〔〕
A.                                    B.                                    C.                 D. 
【答案】C
【考点】平行线的判定与性质,相似三角形的判定与性质
【解析】【解答】解:∵AB⊥BD,CD⊥BD,∴AB∥CD,∴△ABO∽△CDO,∴
AO∶CO=AB∶CD,即4∶1=∶CD,∴CD=:C。【分析】根据垂直于同一直线的两条直线互相平行得出AB∥CD,根据平行于三角形一边的直线截其他两边,所截得三角形与原三角形相似得出△ABO∽△CDO,根据相似三角形对应边城比例得AO∶CO=AB∶CD,从而列出方程,求解即可。
8.(2023·绍兴)利用如图1的二维码可以进行身份识别,某校建立了一个身份识别系统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0,将第一行数字从左到右依次记为a,b,c,d,那么可以转换为该生所在班级序号,其序号为a×23+b×22+c×21+d×20。如图2第一行数字从左到右依次为0,1,0,1,序号为0×23+1×22+0×21+1×20=5,表示该生为5班学生,表示6班学生的识别图案是〔〕
A. B. C. D. 
【答案】B
【考点】代数式求值
【解析】【解答】解:A、序号为:1×23+0×22+1×21+0×20=11,故A不适合题意;B、序号为:0×23+1×22+1×21+0×20=6,故B适合题意;C、序号为:1×23+0×22+0×21+1×20=9,故C不适合题意;D、序号为:0×23+1×22+1×21+1×20=7,故D不适合题意;故答案为:B【分析】根据黑色小正方形表示1,白色小正方形表示0,将第一行数字从左到右依次记为a,b,c,d,那么可以转换为该生所在班级序号,其序号为a×23+b×22+c×21+d×20,将每一个身份识别系统按程序算出序号,即可一一判断。
9.(2023·绍兴)假设抛物线y=x2+ax+b与x轴两个交点间的距离为2,称此抛物线为定弦抛物线。某定弦抛物线的对称轴为直线x=1,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点〔〕
A. 〔-3,-6〕B. 〔-3,0〕             C. 〔-3,-5〕D. 〔-3,-1〕
【答案】B
【考点】二次函数图象的几何变换,待定系数法求二次函数解析式
【解析】【解答】解:根据定弦抛物线的定义及某定弦抛物线的对称轴为直线
x=1,从而得出该抛物线与两坐标轴的交点为〔0,0〕,〔2,0〕,将〔0,0〕,〔2,0〕分别代入y=x2+ax+b得b=0,a=-2,故抛物线的解析式为:y=x2-2x=(x-1)2-1,将将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线为:y=(x+1)2-4;然后将x=-3代入得y=0,故新抛物线经过点〔-3,0〕故答案为:B。【分析】首先根据题意得出抛物线与坐标轴交点的坐标,然后将这两点的坐标分别代入抛物线的解析式得出a,b的值,从而得出定弦抛物线的解析式,再根据平移规律得出新抛物线的解析式,然后将x=-3代入得y=0从而得出答案。
10.(2023·绍兴)某班要在一面墙上同时展示数张形状、大小均相同的矩形绘画作品,将这些作品拍成一个矩形〔作品不完全重合〕。现需要在每张作品的四个角落都钉上图钉,如果作品有角落相邻,那么相邻的角落共享一枚图钉〔例如,用9枚图钉将4张作品钉在墙上,如图〕。假设有34枚图钉可供选用,那么最多可以展示绘画作品〔〕
A. 16张B. 18张C. 20张D. 21张
【答案】D
【考点】探索数与式的规律
【解析】【解答】解:①如果所有的画展示成一行,34枚图钉最多可以展示16张画,②如果所有的画展示成两行,34枚图钉最多可以展示20张画,③如果所有的画展示成两行,34枚图钉最多可以展示21张画,故答案为:D。【分析】分类讨论:分别找出展示的画展成一行,二行,三行的时候,34枚图钉最多可以展示的画的数量再比拟大小即可得出答案。
二、填空题
11.(2023·绍兴)因式分解:4x2-y2=________。
【答案】〔2x+y〕〔2x-y〕
【考点】因式分解﹣运用公式法
【解析】【解答】解:原式=〔2x〕2-y2=〔2x+y〕〔2x-y〕【分析】直接利用平方差公式法分解即可。
12.(2023·绍兴)我国明代数学读本?算法统宗?一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托。如果1托为5尺,那么索长
________尺,竿子长为________尺。
【答案】20;15
【考点】一元一次方程的实际应用-和差倍分问题
【解析】【解答】解:设竿子长为x尺,那么索长为〔x+5〕尺,由题意得解得:x=15,故索长为:15+5=20尺故答案为:15,20.【分析】设竿子长为x尺,那么索长为〔x+5〕尺,根据,对折索子来量竿,却比竿子短一托列出方程,求解即可得出答案。
13.(2023·绍兴)如图,公园内有一个半径为20米的圆形草坪,A,B是圆上的点,O为圆心,∠AOB=120°,从A到B只有路弧AB,一局部市民走“捷径〞,踩坏了花草,走出了一条小路AB。通过计算可知,这些市民其实仅仅少走了________步〔,结果保存整数〕。〔参考数据:≈,〕
【答案】15
【考点】垂径定理,弧长的计算,锐角三角函数的定义
【解析】【解答】解:连接AB,过点O作OC⊥AB于点C,∴AB=2OC,∠OCA=90º,∠AOC=60º,∴AC=OA·Sin60º=20×=10,∴AB==,弧AB==,∴-=,÷≈15步。故答案为:15【分析】连接AB,过点O作OC⊥AB于点C,根据垂径定理得出AB=2OC,∠OCA=90º,∠AOC=60º,根据正切函数的定义由AC=OA·Sin60º得出AC的长度,进而得出AB的长度,根据弧长公式计算出弧AB的长,从而算出答案。
14.(2023·绍兴)等腰三角形ABC中,顶角A为40°,点P在以A为圆心,BC长为半径的圆上,且BP=BA,那么∠PBC的度数为________。
【答案】30°或110°
【考点】全等三角形的判定与性质,等腰三角形的性质,平行四边形的判定与性质
【解析】【解答】解:此题分两种情况:①点P在AB的左侧,连接PA,如图,∴BC=PA,∵等腰三角形ABC中,顶角A为40°,∴∠ABC=70º,AB=AC,又∵BP=BA,∴AC=BP,∴四边形APBC是平行四边形,∴AC∥PB,∴∠CAB=∠PBA=40º,∴∠PBC=∠PBA+∠ABC=110º,②点P在在AB的右侧,连接PA,如图,∴BC=PA,,∵等腰三角形ABC中,顶角A为40°,∴∠ABC=70º,AB=AC,又∵BP=BA,∴AC=BP,在△ABP与△BAC中,∵AB=BA,AP=BC,AC=BP,∴△ABP≌△BAC,∴∠ABP=∠BAC=40º,∴∠PBC=∠ABC-∠ABP=30º.故答案为:30°或110°【分析】此题分两种情况:①点P在AB的左侧,连接PA,根据等腰三角形的性质由等腰三角形ABC中,顶角A为40°,得出∠ABC=70º,AB=AC,又BP=BA,故AC=BP,根据两组对边分别相等的四边形是平行四边形得出:四边形APBC是平行四边形,根据平行四边形的对边平行得出AC∥PB,根据二直线平行内错角相等得出∠CAB=∠PBA=40º,根据∠PBC=∠PBA+∠ABC得出答案;,②点P在在AB的右侧,连接PA,根据等腰三角形ABC中,顶角A为40°,∴得出∠ABC=70º,AB=AC,又BP=BA,故AC=BP由SSS判断出△ABP≌△BAC,根据全等三角形的对应角相等得出∠ABP=∠BAC=40º,根据∠PBC=∠ABC-∠ABP得出答案。
15.(2023·绍兴)过双曲线上的动点A作AB⊥x轴于点B,P是直线AB上的点,且满足AP=2AB,过点P作x轴的平行线交此双曲线于点C,如果△APC
的面积为8,那么k的值是________。
【答案】12或4
【考点】点的坐标,反比例函数图象上点的坐标特征
【解析】【解答】解:此题分两种情况:①点P在B点的下方,设A〔a,〕∵过点A作AB⊥x轴于点B,P是直线AB上的点,且满足AP=2AB,∴P(a,-),∵过点P作x轴的平行线交此双曲线于点C,∴C(-a,-),∴PC=2a,AP=,∵S△APC=PC·AP=8,∴K=4;②点P在点A的上方,设A〔a,〕,∵过点A作AB⊥x轴于点B,P是直线AB上的点,且满足AP=2AB,∴P〔a,〕,∵过点P作x轴的平行线交此双曲线于点C,∴C〔,〕,∴pc=,PA=,∵S△APC=PC·AP=8,∴K=12;故答案为:12或4【分析】此题分两种情况:①点P在B点的下方,设出A点的坐标,进而得出B,C两点的坐标,PC的长度,AP的长度,根据S△APC=PC·AP=8得出关于k的方程,求解得出k的值;;②点P在点A的上方设出A点的坐标,进而得出B,C两点的坐标,PC的长度,AP的长度,根据S△APC=PC·AP=8得出关于k的方程,求解得出k的值。
16.(2023·绍兴)实验室里有一个水平放置的长方体容器,从内部量得它的高是15cm,底面的长是30cm,宽是20cm,容器内的水深为xcm。现往容器内放入如图的长方体实心铁块〔铁块一面平放在容器底面〕,过顶点A的三条棱的长分别是10cm,10cm,ycm〔y≤10〕,当铁块的顶部高出水面2cm时,x,y满足的关系式是________。
【答案】或
【考点】根据实际问题列一次函数表达式
【解析】【解答】解:由题意得:①600x+100(y-2)=600(y-2),整理得:;②600x+10y×8=600×8整理得:【分析】分类讨论:①将铁块的两条长分别是10cm,10cm棱所在的面平放与水槽内,②将铁块的两条长分别是10cm,ycm棱所在的面平放与水槽内;根据水的体积+没入水中的铁块的体积=水槽内水面到达的高度时的总体积列出函数关系式即可。
三、解答题
17.(2023·绍兴)
〔1〕计算:
〔2〕解方程:x2-2x-1=0
【答案】〔1〕解:原式=--1+3=2〔2〕解:∵a=1,b=-2,c=-1∴∆=b2-4ac=4+4=8,∴x=x=∴x1=,x2=
【考点】实数的运算,公式法解一元二次方程
【解析】【分析】〔1〕根据特殊锐角的三角形函数值,算术平方根的意义,0指数的意义,负指数的意义,分别化简,再按实数的运算顺序计算即可;〔2〕先找出原方程中a,b,c的值,计算出∆的值,再根据求根公式即可算出方程的解。
18.(2023·绍兴)为了解某地区机年动车拥有量对道路通行的影响,学校九年级社会实践小组对2023—2023年机动车拥有量、车辆经过人民路路口和学校门口的堵车次数进行调查统计,并绘制成以下统计图:根据统计图,答复以下问题
〔1〕写出2023年机动车的拥有量,分别计算2023年—2023年在人民路路口和学校门口堵车次数的平均数。
〔2〕根据统计数据,结合生活实际,对机动车拥有量与人民路路口和学校门口堵车次数,说说你的看法。
【答案】〔1〕解:根据条形统计图可知:2023年机动车的拥有量:。根据折线统计图可知:2023年—2023年在人民路路口的堵车次数分别为:
54,82,86,98,124,156,196,164次,故人民路路口的堵车次数平均数为:〔54+82+86+98+124+156+196+164〕÷8=120〔次〕;2023年—2023年在学校门口的堵车次数分别为:65,85,121,144,128,108,77,72次,故学校门口的堵车次数平均数为:〔65+85+121+144+128+108+77+72〕÷8=100〔次〕。〔2〕解:如:2023—2023年,随着机动车拥有量的增加,对道路的影响加大,年堵车次数也增加;尽管2023年机动车拥有量比2023年增加,由于进行了交通综合治理,人民路路口堵车次数反而降低。
【考点】条形统计图,折线统计图
【解析】【分析】〔1〕根据条形统计图可知就可读出2023年机动车的拥有量;根据折线统计图可读出2023年—2023年在人民路路口的堵车次数,再算出其平均数即可;根据折线统计图可读出2023年—2023年在学校门口的堵车次数,再算出其平均数即可;〔2〕此题是开放性的命题结合条形统计图及折线统计图的特点结合实际说的合理就行。
19.(2023·绍兴),如图是油箱剩余油量y〔升〕关于加满油后已行驶的路程x〔千米〕的函数图象。
〔1〕根据图像,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量。
〔2〕求y关于x的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程。
【答案】〔1〕解:汽车行驶400千米,剩余油量30升,加满油时,油量为70升。〔2〕解:设y=kx+b〔k≠0〕,把点〔0,70〕,〔400,30〕坐标代入得b=70,k=-,∴y=-+70,当y=5时,x=650,即已行驶的路程为650千米。
【考点】待定系数法求一次函数解析式
【解析】【分析】〔1〕根据图像汽车行驶400千米,剩余油量30升,又油箱中的余油量+已经用了油等于开始油箱中的油量得出答案;〔2〕用待定系数法,根据图像油箱剩余油量y〔升〕关于加满油后已行驶的路程x〔千米〕的函数图象是一条直线,用待定系数法,设y=kx+b〔k≠0〕,把点〔0,70〕,〔400,30〕坐标代入即可得出一个关于k,b的二元一次方程组,求解即可得出k,b的值,从而得出函数解析式;
20.(2023·绍兴)学校拓展小组研制了绘图智能机器人〔如图1〕,顺次输入点P1,P

2023年浙江省绍兴义乌市中考数学试卷(word版) 来自淘豆网m.daumloan.com转载请标明出处.

非法内容举报中心
文档信息
  • 页数16
  • 收藏数0 收藏
  • 顶次数0
  • 上传人lu2yuwb
  • 文件大小585 KB
  • 时间2022-10-12