下载此文档

北京数学初三二次函数知识点总结.doc


文档分类:中学教育 | 页数:约9页 举报非法文档有奖
1/9
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/9 下载此文档
文档列表 文档介绍
该【北京数学初三二次函数知识点总结 】是由【莫比乌斯】上传分享,文档一共【9】页,该文档可以免费在线阅读,需要了解更多关于【北京数学初三二次函数知识点总结 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。初三数学二次函数知识点总结
一、二次函数概念:
:一般地,形如(是常数,)的函数,叫做二次函数。这里需要强调:和一元二次方程类似,二次项系数,.
:
⑴等号左边是函数,右边是关于自变量的二次式,的最高次数是2.
⑵是常数,是二次项系数,是一次项系数,是常数项.
二、二次函数的基本形式
二次函数的基本形式的性质:
a的绝对值越大,抛物线的开口越小。
的符号
开口方向
顶点坐标
对称轴
性质
向上
X=h
时,随的增大而增大;时,随的增大而减小;时,有最小值.
向下
X=h
时,随的增大而减小;时,随的增大而增大;时,有最大值.
三、二次函数图象的平移
:
方法一:⑴将抛物线解析式转化成顶点式,确定其顶点坐标;
⑵保持抛物线的形状不变,将其顶点平移到处,具体平移方法如下:

在原有函数的基础上“值正右移,负左移;值正上移,负下移”.
概括成八个字“左加右减,上加下减”.
方法二:
⑴沿轴平移:向上(下)平移个单位,变成
(或)
⑵沿轴平移:向左(右)平移个单位,变成(或)
四、二次函数与的比较
从解析式上看,与是两种不同的表达形式,后者通过配方可以得到前者,即,其中.
五、二次函数图象的画法
五点绘图法:利用配方法将二次函数化为顶点式,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,:顶点、与轴的交点、以及关于对称轴对称的点、与轴的交点,(若与轴没有交点,则取两组关于对称轴对称的点).
画草图时应抓住以下几点:开口方向,对称轴,顶点,与轴的交点,与轴的交点.
六、二次函数的性质
,抛物线开口向上,对称轴为,顶点坐标为.
当时,随的增大而减小;当时,随的增大而增大;当时,有最小值.
,抛物线开口向下,对称轴为,,随的增大而增大;当时,随的增大而减小;当时,有最大值.
七、二次函数解析式的表示方法
:(,,为常数,);
:(,,为常数,);
:(,,是抛物线与轴两交点的横坐标).
注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与轴有交点,即时,.
八、二次函数的图象与各项系数之间的关系

二次函数中,作为二次项系数,,的正负决定开口方向,的大小决定开口的大小.

在二次项系数确定的前提下,决定了抛物线的对称轴.
的符号的判定:对称轴在轴左边则,在轴的右侧则,概括的说就是“左同右异”
.
总之,只要都确定,那么这条抛物线就是唯一确定的.
二次函数解析式的确定:
根据已知条件确定二次函数解析式,,选择适当的形式,,有如下几种情况:
,一般选用一般式;
(小)值,一般选用顶点式;
,一般选用两根式;
,常选用顶点式.
九、二次函数与一元二次方程:
(二次函数与轴交点情况):
一元二次方程是二次函数当函数值时的特殊情况.
图象与轴的交点个数:
①当时,图象与轴交于两点,.②当时,图象与轴只有一个交点;③当时,,图象落在轴的上方,无论为任何实数,都有;当时,图象落在轴的下方,无论为任何实数,都有.
,交点坐标为,;
:
⑴求二次函数的图象与轴的交点坐标,需转化为一元二次方程;
⑵求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;
⑶根据图象的位置判断二次函数中,,的符号,或由二次函数中,,的符号判断图象的位置,要数形结合;
⑷二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与轴的一个交点坐标,可由对称性求出另一个交点坐标.
二次函数考查重点与常见题型
考查二次函数的定义、性质,有关试题常出现在选择题中,如:
已知以为自变量的二次函数的图像经过原点,则的值是
综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如:
如图,如果函数的图像在第一、二、三象限内,那么函数的图像大致是()
yyyy
11
0x-1ox0x01x
ABCD
考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如:
已知一条抛物线经过(0,3),(4,6)两点,对称轴为,求这条抛物线的解析式。
考查用配方法求抛物线的顶点坐标、对称轴、二次函数的极值,有关试题为解答题,如:
已知抛物线(a≠0)与x轴的两个交点的横坐标是-1、3,与y轴交点的纵坐标是-
(1)确定抛物线的解析式;(2)用配方法确定抛物线的开口方向、对称轴和顶点坐标.
,常见的作为专项压轴题。
由抛物线的位置确定系数的符号
例1(1)二次函数的图像如图1,则点在()

(2)已知二次函数y=ax2+bx+c(a≠0)的图象如图2所示,则下列结论:①a、b同号;②当x=1和x=3时,函数值相等;③4a+b=0;④当y=-2时,()

(1)(2)
【点评】弄清抛物线的位置与系数a,b,c之间的关系,是解决问题的关键.
=ax2+bx+c的图象与x轴交于点(-2,O)、(x1,0),且1<x1<2,与y轴的正半轴的交点在点(O,2):①a<b<0;②2a+c>O;③4a+c<O;④2a-b+1>O,其中正确结论的个数为()

答案:D
会用待定系数法求二次函数解析式
:关于x的一元二次方程ax2+bx+c=3的一个根为x=2,且二次函数y=ax2+bx+c的对称轴是直线x=2,则抛物线的顶点坐标为()
A(2,-3)B.(2,1)C(2,3)D.(3,2)
答案:C
例4、已知抛物线y=x2+x-.
(1)用配方法求它的顶点坐标和对称轴.
(2)若该抛物线与x轴的两个交点为A、B,求线段AB的长.
【点评】本题(1)是对二次函数的“基本方法”的考查,第(2)问主要考查二次函数与一元二次方程的关系.
函数主要关注:通过不同的途径(图象、解析式等)了解函数的具体特征;借助多种现实背景理解函数;将函数视为“变化过程中变量之间关系”的数学模型;渗透函数的思想;关注函数与相关知识的联系。
二次函数对应练习试题
一、选择题
()
A.(2,-11)B.(-2,7)C.(2,11)D.(2,-3)
,得到的抛物线是()
.
()
,则下列结论:①a,b同号;②当和时,函数值相等;③④当时,()

(-1,-)及部分图象(如图),由图象可知关于的一元二次方程的两个根分别是( )
A.-.-.-.-
,则点在( )


()

(2,0),B(-1,0),与轴交于点C,且OC=
.

二、填空题
,则_______。
=-2(x+3)²+5,如果y随x的增大而减小,那么x的取值范围是_______.
:①图象过点(-1,2),②当<0时,函数值随自变量的增大而增大;满足上述两条性质的函数的解析式是(只写一个即可)。
,已知直线过点C,则这条直线与两坐标轴所围成的三角形面积为。
,再向下平移2个单位得到的,则b=,c=。
,一桥拱呈抛物线状,桥的最大高度是16米,跨度是40米,在线段AB上离中心M处5米的地方,桥的高度是 ().
三、解答题:
第15题图
,图象经过(1,-6),且与轴的交点为(0,).
(1)求这个二次函数的解析式;
(2)当x为何值时,这个函数的函数值为0?
(3)当x在什么范围内变化时,这个函数的函数值随x的增大而增大?
,其上升高度h(米)和时间t(秒)符合关系式(0<t≤2),其中重力加速度g以10米/=20米/秒的初速度上升,
(1)这种爆竹在地面上点燃后,经过多少时间离地15米?
(2),判断爆竹是上升,或是下降,并说明理由.
,抛物线经过直线与坐标轴的两个交点A、B,此抛物线与轴的另一个交点为C,抛物线顶点为D.
(1)求此抛物线的解析式;
(2)点P为抛物线上的一个动点,求使:5:4的点P的坐标。
(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,,:当每吨售价每下降10元时,月销售量就会增加7. ,(元),该经销店的月利润为y(元).
(1)当每吨售价是240元时,计算此时的月销售量;
(2)求出y与x的函数关系式(不要求写出x的取值范围);
(3)该建材店要获得最大月利润,售价应定为每吨多少元?
(4)小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由.
一,选择题、

二、填空题、
.<-(答案不唯一).-
三、解答题
15.(1)设抛物线的解析式为,由题意可得
解得所以
(2)或-5(2)
16.(1)由已知得,,解得当时不合题意,舍去。所以当爆竹点燃后1秒离地15米.(2)由题意得,=,可知顶点的横坐标,又抛物线开口向下,,爆竹在上升.
17.(1)直线与坐标轴的交点A(3,0),B(0,-3).则解得
所以此抛物线解析式为.(2)抛物线的顶点D(1,-4),与轴的另一个交点C(-1,0).设P,
当>0时,得∴P(4,5)或P(-2,5)
当<0时,即,,满足条件的点的坐标为(4,5)或(-2,5).
18.(1)=60(吨).(2),化简得:.(3).
红星经销店要获得最大月利润,材料的售价应定为每吨210元.
(4)我认为,:方法一:当月利润最大时,x为210元,而对于月销售额来说,
当x为160元时,月销售额W最大.∴当x为210元时,月销售额W不是最大.∴小静说的不对.
方法二:当月利润最大时,x为210元,此时,月销售额为17325元;而当x为200元时,月销售额为18000元.∵17325<18000,∴当月利润最大时,月销售额W不是最大.∴小静说的不对.

北京数学初三二次函数知识点总结 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数9
  • 收藏数0 收藏
  • 顶次数0
  • 上传人莫比乌斯
  • 文件大小723 KB
  • 时间2022-10-27
最近更新