牛顿环法测曲率半径
2014年11月28日
牛顿环法测曲率半径
光的干涉现象表明了光的波动的性质,干涉现象在科学研究与计量技术中有着广泛的应用。在干涉现象中,不论何种干涉,相邻干涉条纹的光程差的改变都等于相干光的波长,可见光的波长虽然很小,但干涉条纹间的距离或干涉条纹的数目是可以计量的。因此,通过对干涉条纹数目或条纹移动数目的计量,可以得到以光的波长为单位的光程差。
利用光的等厚干涉可以测量光的波长,检验表面的平面度,球面度,光洁度,以及精确测量长度,角度和微小形变等
图1
本实验的主要内容为利用干射法测量平凸透镜的曲率半径。
1. 观察牛顿环
将牛顿环按图2所示放置在读数显微镜镜筒和入射光调节架下方,调节玻璃片的角度,使通过显微镜目镜观察时视场最亮。
调节目镜,看清目镜视场的十字叉丝后,使显微镜镜筒下降到接近牛顿环仪然后缓慢上升,直到观察到干涉条纹,再微调玻璃片角度和显微镜,使条纹清晰。
2. 测牛顿环半径
使显微镜十字叉丝交点和牛顿环中心重合,并使水平方向的叉丝和标尺平行()与显微镜移动方向平行)。记录标尺读数。
转动显微镜微调鼓轮,使显微镜沿一个方向移动,同时数出十字叉丝竖丝移过的暗环数,直到竖丝与第N环相切为止(N根据实验要求决定)。记录标尺读数。
3. 重复步骤2测得一组牛顿环半径值,利用逐差法处理得到的数据,得到牛顿环半径R和R的标准差。
图1
如图所示,在平板玻璃面DCF上放一个曲率半径很大的平凸透镜ACB,C点为接触点,这样在ACB和DCF之间,形成一层厚度不均匀的空气薄膜,单色光从上方垂直入射到透镜上,透过透镜,近似垂直地入射于空气膜。分别从膜的上下表面反射的两条光线来自同一条入射光线,它们满足相干条件并在膜的上表面相遇而产生干涉,干涉后的强度由相遇的两条光线的光程差决定,由图可见,二者的光程差△′等于膜厚度e的两倍,即△′=2e
此外,当光在空气膜的上表面反射时,是从光密媒质射向光疏媒质,反射光不发生相位突变,而在下表面反射时,则会发生相位突变,即在反射点处,反射光的相位与入射光的相位之间相差 p ,与之对应的光程差为 l /2 ,所以相干的两条光线还具有 l /2的附加光程差,总的光程差为
(1)
当△满足条件
,(k=1,2,3…) (2)
时,发生相长干涉,出现第K级亮纹,而当
(3)
时,发生相消干涉,出现第k级暗纹。因为同一级条纹对应着相同的膜厚,所以干涉条纹是一组等厚度线。可以想见,干涉条纹是一组以C点为中心的同心圆,这就是所谓的牛顿环。
如图所示,设第k级条纹的半径为rk,对应的膜厚度为ek ,则
(4)
在实验中,R的大小为几米到十几米,而 ek 的数量级为毫米,所以R >> ek ,ek2相对于2Rk是一个小量,可以忽略,所以上式可以简化为
(5)
如果rk是第k级暗条纹的半径,由式(1)和(3)可得
(6)
代入式(5)得透镜曲率半径的计算公式
(7)
对给定的装置,R为常数,暗纹半径
(8)
和级数k的平方根成正比,即随着k的增大,条纹越来越细。
同理,如果rk是第k级明纹,则由式(1)和(2)得
(9)
代入式(5),可以算出
(10)
由式(8)和
牛顿环法测曲率半径 来自淘豆网m.daumloan.com转载请标明出处.