高温超导材料临界转变温度的测定
图2 汞的零电阻现象
生医0 王言 2010013212
0
10-5W
电
阻
︵
W
︶
T (K)
,加深理解超导体的两个基本特性;
;
;
。
1)零电阻现象
我们知道,金属的电阻是由晶格上原子的热振动(声子)以及杂质原子对电子的散射造成的。在低温时,一般金属(非超导材料)总具有一定的电阻,如图1所示,其电阻率 r 与温度T的关系可表示为:
(1)
式中r0是T=0K时的电阻率,称剩余电阻率,它与金属的纯度和晶格的完整性有关,对于实际的金属,其内部总是存在杂质和缺陷,因此,即使使温度趋于绝对零度时,也总存在r0。
1911年,翁纳斯在极低温下研究降温过程中汞电阻的变化时,出乎意料地发现,,汞的电阻急剧下降好几千倍(´10-23W×cm,而迄今正常金属的最低电阻率仅为10-13W×cm,即在这个转变温度以下,电阻为零(现有电子仪表无法量测到如此低的电阻),这就是零电阻现象,如图2所示。需要注意的是只有在直流情况下才有零电阻现象,而在交流情况下电阻不为零。
目前已知包括金属元素、合金和化合物约五千余种材料在一定温度下转变为具有超导电性。这种材料称为超导材料。发生超导转变的温度称为临界温度,以TC表示。
图3 正常-超导转变
r
T
90%r0
50%r0
10%r0
起始转
变温度
TC
DTC
完全转
变温度
r0
由于受材料化学成分不纯及晶体结构不完整等因素的影响,超导材料的正常一超导转变一般是在一定的温度间隔中发生的。如图3,用电阻法(即根据电阻率变化)测定临界温度时,我们通常把降温过程中电阻率-温度曲线开始从直线偏离处的温度称为起始转变温度,把临界温度TC定义为待测样品电阻率从起始转变处下降到一半时对应的温度(r = r0/2),也称作超导转变的中点温度。把电阻率变化从10%到90%所对应的温度间隔定义为转变宽度,记作DTC ,电阻率值刚刚完全降到零时的温度称为完全转变温度。DTC的大小一般反映了材料品质的好坏,均匀单相的样品DTC较窄,反之较宽。
2)完全抗磁性
当把超导体置于外加磁场中时,磁通不能穿透超导体,超导体内的磁感应强度始终保持为0,超导体的这个特性称为迈斯纳效应。注意:完全抗磁性不是说磁化强度M和外磁场B等于零,而仅仅是表示M = -B / 4p。
超导体的零电阻现象与完全抗磁性的两个特性既相互独立又有紧密的联系。完全抗磁性不能由零电阻特性派生出来,但是零电阻特性却是迈斯纳效应的必要条件。超导体的完全抗磁性是由其表面屏蔽电流产生的磁通密度在导体内部完全抵消了由外磁场引起的磁通密度,使其净磁通密度为零,它的状态是唯一确定的,从超导态到正常态的转变是可逆的。
利用迈斯纳效应,测量电感线圈中的一个样品
超导实验预习报告 来自淘豆网m.daumloan.com转载请标明出处.