下载此文档

工程热力学论文.doc


文档分类:高等教育 | 页数:约5页 举报非法文档有奖
1/5
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/5 下载此文档
文档列表 文档介绍
热力学第二定律
热力学第二定律的引出 1
热力学第二定律的表述 2
热力学第二定律的理解 2
热力学第二定律的微观本质和统计意义 3
热力学第二定理的运用 4
摘要:本文主要讲述了热力学第二定律的表述、本质以及其运用。关键词:热传递,不可逆,本质,熵增
绪论:
热力学第二定律是热力学的基本定律之一与第一定律一样,也是一个公理,是人们长期实践经验的总结。它是关于在有限空间和时间内,一切和热运动有关的物理、化学过程的经验总结。它指出,一切涉及热现象的实际宏观过程都是不可逆过程。
热力学第二定律的引出
机械运动、电磁运动中的各种不涉及热现象的过程都是可逆的,可以正向进行,也可以逆向进行,逆过程的每一步都与正过程相同,只是次序相反。但是,功变热量、热传导、自由膨胀等涉及热现象的过程却都不能自动地逆向进行,使系统和外界完全复原。热机把热变为功,热力学第一定律断言其效率不可能大于1,但能否接近或达到1呢?换言之,物体的机械能可以通过摩擦、阻尼、内耗等方式自发地全部转化为系统的内能;反之,系统的内能能否自发地转化为机械能而不产生其他影响呢?卡诺定理指出,这是不可能的,因为存在着某种理论上的限制。由此可见,尽管热量和功都是传递的能量,都是过程量,可按热功当量换算;但也有重要的区别,作功是通过系统整体的宏观位移实现的,传热则是通过组成系统的大量分子的无规则热运动和相互之间的作用实现的。热功转换是系统内分子无规则热运动能量与系统有规则整体运动能量之间的转换。这种转换不仅在总量上要守恒以满足热力学第一定律,而且还必须在转换的方向和限度上受到限制。这正是热运动区别于其他运动形式的特殊本质
,热力学第二定律就是这一特征的概括.
热力学第二定律的表述
(1)克劳修斯说法:“热量不能自动从低温物体流向高温物体”。
(2)开尔文说法:“不可能从单一热源吸热使之完全变为功,而无其它变化”。
实际上两种表述是统一的,可以统一叙述为“热量不能自动从低温物体流向高温物体,但是会自动从高温物体流向低温物体。”克劳修斯说法自然包含在其中了,开尔文说法也可以得到解释,即从热源吸热必然有一部分热量要自动流向周围的低温物体,所以要使之完全变为功是不可能的。
热力学第二定律的理解
在自然条件下热量只能从高温物体向低温物体转移,而不能由低温物体自动向高温物体转移,也就是说在自然条件下,这个转变过程是不可逆的。要使热传递方向倒转过来,只有靠消耗功来实现。
自然界中任何形式的能都会很容易地变成热,而反过来热却不能在不产生其他影响的条件下完全变成其他形式的能,从而说明了这种转变在自然条件下也是不可逆的。热机能连续不断地将热变为机械功,一定伴随有热量的损失。第二定律和第一定律不同,第一定律否定了创造能量和消灭能量的可能性,第二定律阐明了过程进行的方向性,否定了以特殊方式利用能量的可能性。
热力学第二定律的微观本质和统计意义
从分子运动论的观点看,作功是大量分子的有规则运动,而热运动则是大量分子的无规则运动。显然无规则运动要变为有规则运动的几率极小,而有规则的运动变成无规则运动的几率大。一个不受外界影响的孤立系统,其内部自发的过程总是由几率小的状态向几率大的状态进行,从此可见热是不可能自发地变成功的。
根据热力学第二定律,也可以确定一个新的态函数——熵,可以用熵来对第二定

工程热力学论文 来自淘豆网m.daumloan.com转载请标明出处.

非法内容举报中心
文档信息
  • 页数5
  • 收藏数0 收藏
  • 顶次数0
  • 上传人glfsnxh
  • 文件大小35 KB
  • 时间2017-12-03