下载此文档

函数单调性与判断或证明方法.doc


文档分类:高等教育 | 页数:约6页 举报非法文档有奖
1/6
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/6 下载此文档
文档列表 文档介绍
函数单调性的判断或证明方法.
定义法。用定义法证明函数的单调性的一般步骤是①取值,设,且;②作差,求;③变形(合并同类项、通分、分解因式、配方等)向有利于判断差值符号的方向变形;④定号,判断的正负符号,当符号不确定时,应分类讨论;⑤下结论,根据函数单调性的定义下结论。
(-1,+∞)上的单调性,并证明.
解:设-1<x1<x2,
则f(x1)-f(x2)=-
=
=
∵-1<x1<x2,
∴x1-x2<0,x1+1>0,x2+1>0.
∴当a>0时,f(x1)-f(x2)<0, 即f(x1)<f(x2),
∴函数y=f(x)在(-1,+∞)上单调递增.
当a<0时,f(x1)-f(x2)>0, 即f(x1)>f(x2),
∴函数y=f(x)在(-1,+∞)上单调递减.
;在上为减函数。(增两端,减中间)
证明:设,则
因为,所以,
所以,
所以
所以


则,
因为,
所以,
所以
所以
同理,可得
运算性质法.
①在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.(增+增=增;减+减=减;增-减=增,减-增=减)
②若.
③当函数.
④函数二者有相反的单调性。
⑤运用已知结论,直接判断函数的单调性,如一次函数、反比例函数等。

(3)。

解:
在同一坐标系下作出函数的图像得
所以函数的单调增区间为
减区间为.
(4)复合函数法.(步骤:①求函数的定义域;②分解复合函数;③判断内、外层函数的单调性;④根据复合函数的单调性确定函数的单调性.⑤若集合是内层函数的一个单调区间,则便是原复合函数的一个单调区间,如例4;若不是内层函数的一个单调区间,则需把划分成内层函数的若干个单调子区间,这些单调子区间便分别是原复合函数的单调区间,如例5.)
设,,都是单调函数,则在上也是单调函数,其单调性由“同增异减”来确定,即“里外”函数增减性相同,复合函数为增函数,“里外”函数的增减性相反,复合函数为减函数。如下表:

















例4. 求函数的单调区间
解原函数是由外层函数和内层函数复合而成的;
易知是外层函数的单调增区间;
令,解得的取值范围为;
由于是内层函数的一个单调减区间,于是便是原函数的一个单调区间;
根据复合函数“同增异减”的复合原则知,是原函数的单调减区间。
例5 求函数的单调区间.
解原函数是由外层函数和内层函数复合而成的;
易知和都是外层函数的单调减区间;
令,解得的取值范围为;
结合二次函数的图象可知不是内层函数的一个单调区间,但可以把区间划分成内层函数的两个单调子区间和,其中是

函数单调性与判断或证明方法 来自淘豆网m.daumloan.com转载请标明出处.

非法内容举报中心
文档信息
  • 页数6
  • 收藏数0 收藏
  • 顶次数0
  • 上传人tswng35
  • 文件大小1.81 MB
  • 时间2018-10-15