苏科版数学九年级全册知识点梳理第一章图形与证明(二)1等腰三角形的性质定理:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简称“三线合一”)。等腰三角形的两底角相等(简称“等边对等角”)。等腰三角形的判定定理:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简称“等角对等边”)。2直角三角形全等的判定定理:斜边和一条直角边对应相等的两个直角三角形全等(简称“HL”)。角平分线的性质:角平分线上的点到这个角的两边的距离相等。角平分线的判定:角的内部到角的两边距离相等的点,在这个角的平分线上。直角三角形中,30°的角所对的直角边事斜边的一半。3平行四边形的性质与判定:定义:两组对边分别平行的四边形是平行四边形。定理1:平行四边形的对边相等。定理2:平行四边形的对角相等。定理3:平行四边形的对角线互相平分。判定——从边:1两组对边分别平行的四边形是平行四边形。2一组对边平行且相等的四边形是平行四边形。3两组对边分别相等的四边形是平行四边形。从角:两组对角分别相等的四边形是平行四边形。对角线:对角线互相平分的四边形是平行四边形。矩形的性质与判定:定义:有一个角的直角的平行四边形是矩形。定理1:矩形的4个角都是直角。定理2:矩形的对角线相等。定理:直角三角形斜边上的中线等于斜边的一半。判定:1有三个角是直角的四边形是矩形。2对角线相等的平行四边形是矩形。菱形的性质与判定:定义:有一组邻边相等的平行四边形是菱形。定理1:菱形的4边都相等。定理2:菱形的对角线相互垂直,并且每一条对角线平分一组对角。判定:1四条边都相等的四边形是菱形。2对角线互相垂直的平行四边形是菱形。正方形的性质与判定:正方形的4个角都是直角,4条边都相等,对角线相等且互相垂直平分,每一条对角线平分一组对角。正方形即是特殊的矩形,又是特殊的菱形,它具有矩形和菱形的所有性质。判定:1有一个角是直角的菱形是正方形。2有一组邻边相等的平行四边形是正方形。:两腰相等的梯形叫做等腰梯形。定理1:等腰梯形同一底上的两底角相等。定理2:等腰梯形的两条对角线相等。判定:1在同一底上的两个角相等的梯形是等腰梯形。2对角线相等的梯形是等腰梯形。,并且等于第三边的一半。梯形的中位线平行于两底,并且等于两底的一半。中点四边形:依次连接一个四边形各边中点所得到的四边形称为中点四边形(中点四边形一定是平行四边形)。:一组数据中的最大值与最小值的差叫做极差。计算公式:极差=最大值-最小值。极差是刻画数据离散程度的一个统计量,可以反映一组数据的变化范围。一般说,极差越小,则说明数据的波动幅度越小。,记作S2。巧用方差公式:1、基本公式:S2=[(X1-)2+(X2-)2+……+(Xn-)2]2、简化公式:S2=[(X12+X22+……+Xn2)-n2]可写成:S2=(X12+X22+……+Xn2)-23、简化②:S2=[(X’12+X’22+……+X’n2)-n2]也可写成:S2=(X’12+X’22+……+X’n2)-2标准差:方差的算术平方根叫做这组数据的标准差,记作S。意义:1、极差、方
苏科版九年级数学全册知识点整理 来自淘豆网m.daumloan.com转载请标明出处.