Dissertation Submitted to
Hebei University of Technology
for
The Master Degree of
Science in Applied Mathematics
K-Theory be Applied in Approximation of A Class of
Operators
by
Wen Shilin
Supervisor: Prof. He Hua
December 2011
àó’ŒÆa¬Æ Ø©
KnØ3˜aŽf%C¥A^
Á ‡
K nØŠ•š†ÿÀă, éŽf“êïÄäk•
K•. ·‚Œ±ÏLŽf K +5
)Žf(, „Œ±^Žf
†“ê K +5•xŽfƒq5.
H •EŒ© Hilbert ˜m, L(H) • H þk.‚5Žf
N. ©y²
éu L(H) ¥?Û˜‡Žf T, ÑŒ±^k•‡ä
kÐ5ŸrØŒŽf†Ú5%C§, ù
rØŒŽf†
(2)
“êÑ´ŸŒ†, Ù†“êŒ+Óu N ½ N , K0 +
Óu Z ½ Z(2), N L«g,ê+, Z L«ê\+.
'…i: rØŒŽf; †Ú%C; K0 +; Cowen − Douglas Žf
i
KnØ3˜aŽf%C¥A^
K-Theory be Applied in Approximation of A Class of Operators
ABSTRACT
K-theory as the ponent of the subject of/mutative topol-
ogy0, has profound and unexpectedly effect on operator algebras. One can learn
about the structure of a given operator by knowing its K-theory, and one can char-
acterize similarity of operators in terms of the K-group of mutant alge-
bras.
Set L(H) be the collection of the bounded linear operators plex sepa-
rable Hilbert space H. In this paper, we show that: for any operator T ∈ L(H),
there exist direct sum of finitely having good property strongly irreducible oper-
n
n 0 0
ators {Ti} = , such that kT −⊕ Tik < ε, and for each i ∈ N, A (Ti)/radA (Ti)
i 1 i=1
0 0
mutative, where radA (Ti) is the Jacobson radical of A (Ti). Moreover,
0 (2) 0 (2) 0
∨A (Ti) N or N . K0(A (Ti)) Z or Z , where ∨A (Ti) is the semigroup of
0
mutant algebras, and K0(A (Ti)) is its K0-group.
KEY WORDS: strong irreducible operator; direct sum approximation; K0-
group; Cowen − Douglas operator
ii
àó’ŒÆa¬Æ Ø©
8¹
¥©Á‡. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
=©Á‡. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
K理论在一类算子逼近中的应用 来自淘豆网m.daumloan.com转载请标明出处.