下载此文档

数学史概论.doc


文档分类:高等教育 | 页数:约26页 举报非法文档有奖
1/26
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/26 下载此文档
文档列表 文档介绍
数学史概论不了解数学史就不可能全面了解数学科学一、数学史的意义数学史研究数学概念、数学方法和数学思想的起源与发展,及其与社会政治、经济和一般文化的联系。英国科学史家丹皮尔说过:“再没有什么故事能比科学思想发展的故事更有魅力了”。数学是历史员悠久的人类认识领域之一。从远古屈指计数到现代高速电子计算机的发明;从量地测天到抽象严密的公理化体系,在五千余年的数学历史长河中,重大数学思想的诞生与发展,确实构成了科学史上最富有理性魅力的题材。当然,仅仅具有魅力并不能成为开设一门课程的充分理由。数学史无论对于深刻认识作为科学的数学本身,还是全面了解整个人类文明的发展都具有重要意义。与其他知识学科相比,数学是一门历史性或者说累积性很强的科学。重大的数学理论总是在继承和发展原有理论的基础上建立起来的。它们不仅不会推翻原有的理论,而且总是包容原先的理论。例如,数的理论的演进就表现出明显的累积性;在几何学中,非欧几何可以看成是欧氏几何的拓广;溯源于初等代数的抽象代数并没有使前者被淘汰;同样现代分析中诸如函数、导数、积分等概念的推广均包含了古典定义作为其特例,……。可以说,在数学的进化过程中,几乎没有发生过彻底推翻前人建筑的情况。如果我们对比天文学的“地心说”、物理学的“以太说”、化学的“燃素说”的命运,就可以看清数学发展不同于其他学科的这种特点。因此有的数学史家认为“在大多数的学科里,一代人的建筑为下一代人所拆毁,一个人的创造被另一个人所破坏。唯独数学,每一代人都在古老的大厦上添加一层楼。”这种说法虽然有些绝对,但却形象地说明了数学这幢大厦的累积特性。当我们为这幢大厦添砖加瓦时,有必要了解它的历史。按美国《数学评论》杂志的分类,当今数学包括了约60个二级学科,400多个三级学科,更细的分科已难以统计。面对着如此庞大的知识系统,职业数学家越来越被限制于一、二个专门领域。庞加莱(1854一1912)曾经被称为“最后一位数学通才”。对于每一个希望了解整个人类文明史的人来说,数学史是必读的篇章。数学史在整个人类文明史上的这种特殊地位,是由数学作为一种文化的特点决定的。它具有:1、数学以抽象的形式,追求高度精确、可靠的知识。2、与抽象性相联系的数学的另一个特点是在对宇宙世界和人类社会的探索中追求最大限度的一般性模式特别是一般性算法的倾向。3、最后,数学作为一种创造性活动,还具有艺术的特征,这就是对美的追求。英国数学家和哲学家罗素(1872—1970)说过:数学不仅拥有真理,而且拥有至高无上的美——一种冷峻严肃的美。二、数学的定义数学本身是一个历史的概念,数学的内涵随着时代的变化而变化,给数学下—个一劳永逸的定义是不可能的。我们在这里就从历史的角度来谈谈“什么是数学”。1、公元前4世纪的希腊哲学家亚里士多德将数学定义为“数学是量的科学”。2、16世纪英国哲学家培根(1561—1626)将数学分为“纯粹数学”与“混合数学”。这里“混合数学”相当于应用数学,而培根所谓的“纯粹数学”则定义为:“处理完全与物质和自然哲学公理相脱离的量的科学”。3、在17世纪,笛卡儿(1596—1650)认为:“凡是以研究顺序(order)和度量(measure)为目的的科学都与数学有关”。4、19世纪恩格斯这样来论述数学:“纯数学的对象是现实世界的空间形式与数量关”。根据恩格斯的论述,数学可以定义为:“数学是研究现实世界的空间形式与数量关系的科学。”5、19世纪晚期,集合论的创始人康托尔(1845—1918)曾经提出:“数学是绝对自由发展的学科,它只服从明显的思维,就是说它的概念必须摆脱自相矛盾,并且必须通过定义而确定地、有秩序地与先前已经建立和存在的概念相联系”。6、20世纪50年代,前苏联一批有影响的数学家试图修正前面提到的恩格斯的定义来概括现代数学发展的特征:“现代数学就是各种量之间的可能的,一般说是各种变化着的量的关系和相互联系的数学”。这里的“量”,被赋予了丰富的现代涵义:它不仅包括现实世界的各种空间形式与数量关系,而且包括了一切可能的空间形式与数量关系(如几何学中的高维空间、无穷维空间;代数学中的群、域;分析中的泛函、算子;……等等)。7、从20世纪80年代开始,又出现了对数学的定义作符合时代的修正的新尝试。主要是一批美国学者,将数学简单地定义为关于“模式”的科学:“【数学】这个领域己被称作模式的科学,其目的最要揭示人们从自然界和数学本身的抽象世界中所观察到的结构和对称性”。这一定义实际上是用“模式”代替了“量”,而所谓的“模式”有着极广泛的内涵,包括了数的模式,形的模式,运动与变化的模式,推理与通信的模式,行为的模式,……。这些模式可以是现实的,也可以是想象的;可以是定量的,也可以是定性的。三、数学史的划分一般可以按照如下线索:(1)按时代顺序;(2)按数学对象、方法等

数学史概论 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数26
  • 收藏数0 收藏
  • 顶次数0
  • 上传人wxc6688
  • 文件大小113 KB
  • 时间2019-04-27