下载此文档

对于π的认识.doc


文档分类:研究报告 | 页数:约3页 举报非法文档有奖
1/3
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/3 下载此文档
文档列表 文档介绍
Forpersonaluseonlyinstudyandresearch;mercialuse莇对于π的认识蚄这个假期是我过的最愉快的一次暑假,因为我在妈妈的谆谆教导之下,学到了数学常数π的知识,我对它产生了极大的兴趣。肂π是一个在数学及物理学中普遍存在的数学常数,英语名称:Pi,汉语名称:派,是第十六个希腊字母。在数学中叫做:圆周率,是指平面上圆的周长与直径之比。用希腊字母π(读“Pài”)表示。中国古代有圆率、周率、周等名称。肀之后,我又通过电脑查询得知了圆周率的历史:袅古希腊欧几里得《几何原本》(约公元前3世纪初)中提到圆周率是常数,中国古算书《周髀算经》(约公元前2世纪)中有“径一而周三”的记载,也认为圆周率是常数。历史上曾采用过圆周率的多种近似值,早期大都是通过实验而得到的结果,如古埃及纸草书(约公元前1700)中取π=(4/3)^4≒。第一个用科学方法寻求圆周率数值的人是阿基米德,他在《圆的度量》(公元前3世纪)中用圆内接和外切正多边形的周长确定圆周长的上下界,从正六边形开始,逐次加倍计算到正96边形,得到(3+(10/71))<π<(3+(1/7)),开创了圆周率计算的几何方法(亦称古典方法,或阿基米德方法),得出精确到小数点后两位的π值。蒃中国数学家刘徽在注释《九章算术》(263年)时只用圆内接正多边形就求得π的近似值,也得出精确到两位小数的π值,他的方法被后人称为割圆术。他用割圆术一直算到圆内接正192边形。膂南北朝时代数学家祖冲之进一步得出精确到小数点后7位的π值(约5世纪下半叶),,还得到两个近似分数值,密率355/113和约率22/7。其中的密率在西方直到1573才由德国人奥托得到,1625年发表于荷兰工程师安托尼斯的著作中,欧洲称之为安托尼斯率。蒁无穷乘积式、无穷连分数、无穷级数等各种π值表达式纷纷出现,π值计算精度也迅速增加。1706年英国数学家梅钦计算π值突破100位小数大关。1873年另一位英国数学家尚可斯将π值计算到小数点后707位,可惜他的结果从528位起是错的。到1948年英国的弗格森和美国的伦奇共同发表了π的808位小数值,成为人工计算圆周率值的最高纪录。薇电子计算机的出现使π值计算有了突飞猛进的发展。1949年美国马里兰州阿伯丁的军队弹道研究实验室首次用计算机(ENIAC)计算π值,一下子就算到2037位小数,突破了千位数。1989年美国哥伦比亚大学研究人员用克雷-2型和IBM-,,创下新的纪录。至今,最新纪录是小数点后25769亿位。蒆除π的数值计算外,它的性质探讨也吸引了众多数学家。1761年瑞士数学家兰伯特第一个证明π是无理数。1794年法国数学家勒让德又证明了π^2也是无理数。到1882年德国数学家林德曼首次证明了π是超越数,由此否定了困惑人们两千多年的“化圆为方”尺规作图问题。还有人对π的特征及与其它数字的联系进行研究。如1929年苏联数学家格尔丰德证明了e^π是超越数等等。节古今中外,许多人致力于圆周率的研究与计算。为了计算出圆周率的越来越好的近似值,一代代的数学家为这个神秘的数贡献了无数的时间与心血。薈十九世纪前,圆周率的计算进展相当缓慢,

对于π的认识 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数3
  • 收藏数0 收藏
  • 顶次数0
  • 上传人小点
  • 文件大小27 KB
  • 时间2019-04-30
最近更新