其一:平面上到定点的距离等于定长的点的集合叫圆。其二:平面上一条线段,绕它的一端旋转360°,留下的轨迹叫圆。【有关圆的基本性质与定理】⑴圆的确定:画一条线段,以线段长为半径以一端点为圆心画弧绕360度后得到圆。圆的对称性质:圆是轴对称图形,其对称轴是任意一条通过圆心的直线。圆也是中心对称图形,其对称中心是圆心。垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的2条弧。逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的2条弧。⑵有关圆周角和圆心角的性质和定理在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。一条弧所对的圆周角等于它所对的圆心角的一半。直径所对的圆周角是直角。90度的圆周角所对的弦是直径。如果一条弧的长是另一条弧的2倍,那么其所对的圆周角和圆心角是另一条弧的2倍。⑶有关外接圆和内切圆的性质和定理①一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形三个顶点距离相等;②内切圆的圆心是三角形各内角平分线的交点,到三角形三边距离相等。③R=2S△÷L(R:内切圆半径,S:三角形面积,L:三角形周长)④两相切圆的连心线过切点(连心线:两个圆心相连的直线)⑤圆O中的弦PQ的中点M,过点M任作两弦AB,CD,弦AD与BC分别交PQ于X,Y,则M为XY之中点。(4)如果两圆相交,那么连接两圆圆心的线段(直线也可)垂直平分公共弦。(5)圆心角的度数等于它所对的弧的度数。(6)圆周角的度数等于它所对的弧的度数的一半。(7)弦切角的度数等于它所夹的弧的度数的一半。(8)圆内角的度数等于这个角所对的弧的度数之和的一半。(9)圆外角的度数等于这个角所截两段弧的度数之差的一半。【有关切线的性质和定理】圆的切线垂直于过切点的半径;经过半径的一端,并且垂直于这条半径的直线,是这个圆的切线。切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线。切线的性质:(1)经过切点垂直于这条半径的直线是圆的切线。(2)经过切点垂直于切线的直线必经过圆心。(3)圆的切线垂直于经过切点的半径。切线长定理:从圆外一点到圆的两条切线的长相等,那点与圆心的连线平分切线的夹角。〖有关圆的计算公式〗=2πr==πr²;=nπr/=(nπr²)/360=lr/2(l为扇形的弧长)=(扇形)的圆心角n=360r/l(r是底面半径,l是母线长)切割线定理圆的一条切线与一条割线相交于p点,切线交圆于C点,割线交圆于AB两点,则有pC²=pA•pB割线定理与切割线定理相似两条割线交于p点,割线m交圆于A1B1两点,割线n交圆于A2B2两点则pA1•pB1=pA2•pB2【圆的解析几何方程】圆的标准方程:在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是(x-a)²+(y-b)²=r²。圆的一般方程:把圆的标准方程展开,移项,合并同类项后,可得圆的一般方程是x²+y²+Dx+Ey+F=0(其中D²+E²-4F>0)。其中和标准方程对比,其实D=-2a,E=-2b,F=a²+b²-r²。该圆圆心坐标为(-D/2,-E/2),半径r=√D²+E²-4F。
圆的定义有两个 来自淘豆网m.daumloan.com转载请标明出处.